$$
H_{B} j \omega=\frac{\omega_{c}}{j \omega-\omega_{c} \frac{-}{\sqrt{ }}+j \frac{-}{\sqrt{ }} j \omega-\omega_{c} \frac{-}{\sqrt{ }}-j \frac{}{\sqrt{ }}}
$$

$$
H_{B} j \omega=\frac{A}{j \omega-\omega_{c} \frac{-}{\sqrt{ }}+j \frac{}{\sqrt{V}}}+\frac{A}{j \omega-\omega_{c} \frac{-}{\sqrt{ }}-j \frac{1}{\sqrt{ }}}
$$

$$
h_{B} t=\sqrt{ } \omega_{c} e^{\frac{-\omega_{c}}{\sqrt{c}} t} \quad \frac{\omega_{c}}{\sqrt{ }} t u t
$$

$$
\omega \quad s=\omega_{c} \frac{-}{\sqrt{ }}+j \frac{}{\sqrt{ }} \quad s=\omega_{c} \frac{-}{\sqrt{ }}-j \frac{}{\sqrt{ }}
$$

$$
H_{B} s=\frac{\omega_{c}}{s-\omega_{c} \frac{-}{\sqrt{ }}+j \frac{}{\sqrt{ }} \quad s-\omega_{c} \frac{-}{\sqrt{ }}-j \frac{}{\sqrt{ }}}=\frac{\omega_{c}}{s-s \quad s-s}=\frac{A}{s-s}+\frac{A}{s-s}
$$

$$
A=H_{B} \quad s \quad s-\left.s\right|_{s=s}=\frac{\omega_{c}}{s-s}=\frac{\omega_{c}}{\sqrt{j}}
$$

$$
A=H_{B} s \quad s-\left.s\right|_{s=s}=\frac{\omega_{c}}{s-s}=-\frac{\omega_{c}}{\sqrt{j}}
$$

$$
\frac{A}{j \omega-s}
$$

$$
A e^{s t} u t \stackrel{F T}{\leftrightarrow} \frac{A}{j \omega-s} \quad \text { for } \quad s<
$$

$$
\begin{aligned}
& h_{B} t=A e^{s t}+A e^{s t} u t=\frac{\omega_{c}}{\sqrt{ } j} e^{\omega_{c} \frac{-}{\sqrt{ }}+j \frac{\bar{V}}{} t}-e^{\omega_{c} \frac{-}{\sqrt{V}}-j \frac{\bar{V}^{\sqrt{V}}}{} t} u t \\
& =\frac{\omega_{c}}{\sqrt{ } j} e^{\frac{-\omega_{c} t}{\sqrt{ }}} e^{j \frac{\omega_{c}}{\sqrt{v}} t}-e^{-j \frac{\omega_{c}}{\sqrt{ }} t} u t=\sqrt{\omega_{c}} e^{\frac{-\omega_{c} t}{\sqrt{c}}} \quad \frac{\omega_{c} t}{\sqrt{ }} u t
\end{aligned}
$$

6. 2 Exercise 6.4 of Boulet's book.

Compute the step response of the LTI system $H(s)=\frac{6(s+1)}{s(s+3)}, \operatorname{Re}\{s\}>0$.

Answer:

$$
\begin{aligned}
S(s) & =\frac{1}{s} H(s)=\frac{6(s+1)}{s^{2}(s+3)}, \operatorname{Re}\{s\}>0 \\
& =\underbrace{\frac{s+3}{s+3}}_{\operatorname{Re}\{(\}\}}+\underbrace{\frac{4 / 3}{s}}_{\operatorname{Re}\{s\}>0}+\underbrace{\frac{2}{s^{2}}}_{\operatorname{Re}(s)>0}
\end{aligned}
$$

Using Table D. 4 of basic Laplace transform pairs, we obtain the step response:

$$
s(t)=-\frac{4}{3} e^{-3 t} u(t)+\frac{4}{3} u(t)+2 t u(t) .
$$

6.3 Exercise 6.6 of Boulet's book.

Suppose that the LTI system described by $H(s)=\frac{2}{(s+3)(s-1)}$ is known to be stable. Is this system causal? Compute its impulse response $h(t)$.

Answer:

There are three possible ROC's that could be associated with this transfer function. Only one ROC contains the imaginary axis and leads to a stable system: $-3<\operatorname{Re}\{s\}<1$. With this ROC, the system is noncausal as the ROC is not a right half-plane. Impulse response:

$$
\begin{aligned}
H(s) & =\frac{2}{(s+3)(s-1)},-3<\operatorname{Re}\{s\}<1 \\
& =\frac{-1 / 2}{\underbrace{s+3}_{\operatorname{Re}(s)>-3}}+\frac{1 / 2}{\underbrace{s-1}_{\operatorname{Re}(s)<1}}
\end{aligned}
$$

which yields: $\quad h(t)=-\frac{1}{2} e^{-3 t} u(t)-\frac{1}{2} e^{t} u(-t)$.

6.4 Exercise 6.8 of Boulet's book.

Consider an LTI system with transfer function $H(s)=\frac{s(s-1)}{s^{2}+\sqrt{2} s+1}$. Sketch all possible ROCs of $H(s)$ on a pole-zero plot and compute the associated impulse responses $h(t)$. Indicate for each impulse response whether it corresponds to a system that is causal/stable.

Answer:

$$
H(s)=\frac{s(s-1)}{\left(s+\frac{1}{\sqrt{2}}-j \frac{1}{\sqrt{2}}\right)\left(s+\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}}\right)}
$$

There are two possible ROC's that could be associated with this transfer function. Only one ROC leads to a stable system: ROC1.

Impulse response with ROC1: stable and causal.

$$
\begin{aligned}
& H(s)=\underset{\forall}{\forall} s+\underbrace{\frac{-1.21-j 0.5}{s+\frac{1}{\sqrt{2}}-j \frac{1}{\sqrt{2}}}}_{\left.\operatorname{Re}_{s}\{ \}\right\rangle>-\frac{1}{\sqrt{2}}}+\underbrace{\frac{-1.21+j 0.5}{s+\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}}}}_{\operatorname{Re}(s)>-\frac{1}{\sqrt{2}}} \\
& h(t)=\delta(t)+e^{-\frac{1}{\sqrt{2}^{t}}\left[-2.42 \cos \left(\frac{1}{\sqrt{2}} t\right)+\sin \left(\frac{1}{\sqrt{2}} t\right)\right] u(t)}
\end{aligned}
$$

Impulse response with ROC2: unstable, anticausal.

$$
\begin{aligned}
& H(s)={\underset{\forall V}{s}}_{1}^{+}+\underbrace{\frac{-1.21-j 0.5}{s+\frac{1}{\sqrt{2}}-j \frac{1}{\sqrt{2}}}}_{\operatorname{Re}\left\{(t)<-\frac{1}{\sqrt{2}}\right.}+\underbrace{\frac{-1.21+j 0.5}{s+\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}}}}_{\operatorname{Re}\left((s)<\frac{1}{\sqrt{2}}\right.} \\
& h(t)=\delta(t)-e^{-\frac{1}{\sqrt{2}} t}\left[-2.42 \cos \left(\frac{1}{\sqrt{2}} t\right)+\sin \left(\frac{1}{\sqrt{2}} t\right)\right] u(-t)
\end{aligned}
$$

6.5 Exercise 6.10 of Boulet's book.
(a) Find the impulse response of the system $H(s)=\frac{3 s^{2}-3 s-6}{s^{3}+12 s^{2}+120 s+200}, \operatorname{Re}\{s\}>-2$. Hint: this system has a pole at -2 .

Answer:

$$
\begin{aligned}
H(s) & =\frac{3 s^{2}-3 s-6}{s^{3}+12 s^{2}+120 s+200}, \operatorname{Re}\{s\}>-2 \\
& =\frac{3 s^{2}-3 s-6}{(s+2)\left(s^{2}+10 s+100\right)}, \operatorname{Re}\{s\}>-2 \\
& =\underbrace{\frac{0.14286}{s+2}}_{\operatorname{Re}\{s\}\rangle-2}+\underbrace{\frac{1.4286+j 1.4104}{s+5-j 5 \sqrt{3}}}_{\operatorname{Re}\{s\}>-5}+\underbrace{\frac{1.4286-j 1.4104}{s+5+j 5 \sqrt{3}}}_{\operatorname{Re}\{\{s\}>-5}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
h(t) & =0.14286 e^{-2 t} u(t)+(1.4286+j 1.4104) e^{(-5+j 5 \sqrt{3}) t} u(t)+(1.4286-j 1.4104) e^{(-5-j 5 \sqrt{3}) r} u(t) \\
& =0.14286 e^{-2 t} u(t)+2 e^{-5 t} \operatorname{Re}\left\{(1.4286+j 1.4104) e^{j 5 \sqrt{3 t}}\right\} u(t) \\
& =0.14286 e^{-2 t} u(t)+2 e^{-5 t}(1.4286 \cos (5 \sqrt{3} t)-1.4104 \sin (5 \sqrt{3} t)) u(t) \\
& =0.14286 e^{-2 t} u(t)+e^{-5 t}(2.8572 \cos (5 \sqrt{3} t)-2.8208 \sin (5 \sqrt{3} t)) u(t)
\end{aligned}
$$

(b) Find the settling value of the step response of $H(s)$ given in (a).

Answer:

Using the final value theorem: $\lim _{t \rightarrow+\infty} s(t)=H(0)=\frac{-6}{200}=-0.03$.
$x \quad t=e^{-t} u t \leftrightarrow \frac{}{s+} \quad R O C \in \quad s>-$
$x \quad t=e^{-t} u t \leftrightarrow \frac{}{s+} \quad R O C \in \quad s>-$
$x t-\leftrightarrow \frac{e^{-s}}{s+} \quad R O C \in \quad s>-$
$x-t+\leftrightarrow \frac{e^{-s}}{-s+} \quad R O C \in \quad s<$

$$
\begin{gathered}
x t-\quad x-t+\quad \leftrightarrow\left[\frac{e^{-s}}{s+}\right]\left[\frac{e^{-s}}{-s}\right] \quad R O C \supseteq \quad s>-\cap \quad s< \\
\beta \\
X s=\frac{}{s+}+\frac{\beta}{s+\beta} \quad s>\quad-\quad \beta
\end{gathered}
$$

