Assignment 4
Due October 14 (Tue), 2008.
$====================$ Part 1 (no submission is required) $==========================$
Practice makes perfect. Do and understand all exercises in Chapter 4 of Benoit Boulet's book.
$================$ Part 2 (Handwritten and submission are required) $==================$
4.1 A periodic rectangular wave as shown below has a frequency of 5 kHz , pulse width $\tau=20 \mu \mathrm{~s}$, amplitude $\mathrm{E}=10 \mathrm{~V}$. Derive the amplitudes of DC , fundamental, second, and third harmonic components.

Answer:

$$
\begin{aligned}
a_{k} & \left.=\frac{1}{T} \int_{-\tau / 2}^{\tau / 2} E e^{-j k \omega_{0} t} d t=\frac{E}{-j k \omega_{0} T} \int_{-\tau / 2}^{\tau / 2} e^{-j k \omega_{0} t} d\left(-j k \omega_{0} t\right)=\frac{E}{-j k \omega_{0} T} e^{-j k \omega_{0} t} \right\rvert\, \begin{array}{c}
\tau / 2 \\
-\tau / 2
\end{array} \\
& =\frac{E}{-j k \omega_{0} T}\left(e^{-j 0.5 k \omega_{0} \tau}-e^{j 0.5 k \omega_{0} \tau}\right) \\
& =\frac{2 E}{k \omega_{0} T} \sin \left(0.5 k \omega_{0} \tau\right) \\
& =\frac{E}{\pi k} \sin (k \pi \tau / T) \\
& =\frac{E \tau}{T} \frac{\sin (k \pi \tau / T)}{k \pi \tau / T} \\
& =\frac{E \tau}{T} \sin c(k \tau / T) \\
a_{0} & =\frac{E \tau}{T}=10 \times 20 \times 10^{-6} \times 5000=1 \quad(V) \\
a_{1} & =\frac{E}{\pi} \sin (\pi \tau / T)=\frac{10}{\pi} \sin \left(\pi \times 20 \times 10^{-6} \times 5000\right)=\frac{10}{\pi} \sin (0.1 \pi) \\
a_{2} & =\frac{E}{2 \pi} \sin (2 \pi \tau / T)=\frac{10}{2 \pi} \sin \left(2 \pi \times 20 \times 10^{-6} \times 5000\right)=\frac{5}{\pi} \sin (0.2 \pi)
\end{aligned}
$$

$$
a_{3}=\frac{E}{3 \pi} \sin (3 \pi / / T)=\frac{10}{3 \pi} \sin \left(3 \pi \times 20 \times 10^{-6} \times 5000\right)=\frac{10}{3 \pi} \sin (0.3 \pi)
$$

The amplitude of DC component is $\mathrm{a}_{0}=1 \mathrm{~V}$.
As $\mathrm{a}_{1}=\mathrm{a}_{-1}$, the fundamental component is $x_{1}(t)=a_{1} e^{j \omega_{0} t}+a_{-1} e^{-j \omega_{0} t}=2 a_{1} \cos \left(\omega_{0} t\right)$.
The amplitude of fundamental is $2 \mathrm{a}_{1}=(20 / \pi) \sin (0.1 \pi)$
As $\mathrm{a}_{2}=\mathrm{a}_{-2}$, the second harmonic component is $x_{2}(t)=a_{2} e^{j 2 \omega_{0} t}+a_{-2} e^{-j 2 \omega_{0} t}=2 a_{2} \cos \left(2 \omega_{0} t\right)$.
The amplitude of the second harmonic component is $2 \mathrm{a}_{2}=(10 / \pi) \sin (0.2 \pi)=1.871(\mathrm{~V})$.
As $a_{3}=\mathbf{a}_{-3}$, the third harmonic component is $x_{3}(t)=a_{3} e^{j 2 \omega_{0} t}+a_{-3} e^{-j 2 \omega_{0} t}=2 a_{3} \cos \left(3 \omega_{0} t\right)$.
The amplitude of the third harmonic component is $2 \mathrm{a}_{3}=(20 / 3 \pi) \sin (0.3 \pi)$.
As $\mathrm{a}_{\mathrm{N}}=\mathrm{a}_{-\mathrm{N}}$, the third harmonic component is $x_{N}(t)=a_{N} e^{j N \omega_{0} t}+a_{-N} e^{-j N \omega_{0} t}=2 a_{N} \cos \left(N \omega_{0} t\right)$.
The amplitude of the third harmonic component is $2 \mathrm{a}_{\mathrm{N}}=2 \mathrm{E} /(\mathrm{N} \pi) \sin (\mathrm{N} \pi \tau / \mathrm{T})=(6.366 / \mathrm{N}) \sin (0.3142 \mathrm{~N})$.
4.2 Let the Fourier series of a periodic signal be

$$
f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}
$$

Prove that $\mathrm{df}(\mathrm{t}) / \mathrm{dt}$ is also a periodic signal, and that its FS is

$$
\frac{d}{d t} f(t)=\sum_{n=-\infty}^{\infty} j \omega_{0} n F_{n} e^{j n \omega_{0} t}
$$

Answer:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{t})=\mathrm{f}(\mathrm{t}+\mathrm{T}) \\
& \mathrm{df}(\mathrm{t}) / \mathrm{dt}=\mathrm{df}(\mathrm{t}+\mathrm{T}) / \mathrm{dt}=\mathrm{f}^{\prime}(\mathrm{t}+\mathrm{T})
\end{aligned}
$$

Thus $\mathrm{df}(\mathrm{t}) / \mathrm{dt}$ is also periodic with period T .
Let the FS of $\mathrm{df}(\mathrm{t}) / \mathrm{dt}$ be

$$
\begin{aligned}
& \frac{d}{d t} f(t)=\sum_{n=-\infty}^{\infty} E_{n} e^{j n \omega_{0} t} \\
& E_{n}=\frac{1}{T} \int_{0}^{T} \frac{d f(t)}{d t} e^{-j n \omega_{0} t} d t=\frac{1}{T}\left[\left.f(t) e^{-j n \omega_{0} t}\right|_{0} ^{T}-\int_{0}^{T}\left(-j n \omega_{0}\right) f(t) e^{-j n \omega_{0} t} d t\right] \\
& =j n \omega_{0} \frac{1}{T} \int_{0}^{T} f(t) e^{-j n \omega_{0} t} d t=j n \omega_{0} F_{n}
\end{aligned}
$$

Thus

$$
\frac{d}{d t} f(t)=\sum_{n=-\infty}^{\infty} j \omega_{0} n F_{n} e^{j n \omega_{0} t}
$$

4.3 Exercise 4.6 of Boulet's book.

Answer:
(a)

$$
\begin{aligned}
a_{k} & =\frac{1}{T_{1}} \int_{0}^{T_{1}} v(t) e^{-j k \omega_{t} t} d t=\frac{A}{T_{1}} \int_{0}^{T_{1}} \sin \left(\omega_{0} t\right) e^{-j k \omega_{1} t} d t \\
& =\frac{A}{2 j T_{1}} \int_{0}^{T_{1}}\left(e^{j \omega_{0} t}-e^{-j \omega_{0} t}\right) e^{-j k \omega_{1} t} d t=\frac{A}{2 j T_{1}} \int_{0}^{\frac{\pi}{\omega_{0}}}\left(e^{j \omega_{0}(1-2 k) t}-e^{-j \omega_{0}(1+2 k) t}\right) d t \\
& =\frac{A \omega_{0}}{2 \pi j}\left[\frac{-2}{j \omega_{0}(1-2 k)}-\frac{2}{j \omega_{0}(1+2 k)}\right] \\
& =\frac{2 A}{\pi\left(1-4 k^{2}\right)}
\end{aligned}
$$

Thus, $v(t)=\sum_{k=-\infty}^{+\infty} \frac{2 A}{\pi\left(1-4 k^{2}\right)} e^{-j k e e_{t} t}$ is the Fourier series of the full-wave rectified sinusoid.
(b) Express $v(t)$ as a real Fourier series of the form $v(t)=a_{0}+2 \sum_{k=1}^{+\infty}\left[B_{k} \cos \left(k \omega_{1} t\right)-C_{k} \sin \left(k \omega_{1} t\right)\right]$

Answer:

Note that the Fourier series coefficients of $v(t)$ are real. Hence

$$
\begin{aligned}
v(t) & =a_{0}+\sum_{k=1}^{+\infty}\left(a_{k} e^{j k \omega_{1} t}+a_{-k} e^{-j k \omega_{1} t}\right) \\
& =a_{0}+\sum_{k=1}^{+\infty} a_{k}\left(e^{j k \omega_{1} t}+e^{-j k \omega_{1} t}\right) \\
& =a_{0}+2 \sum_{k=1}^{+\infty} a_{k} \cos \left(k \omega_{1} t\right)
\end{aligned}
$$

and we can identify the coefficients $B_{k}=a_{k}, C_{k}=0$. Note that $v(t)$ is an even function, hence it must be an infinite sum of even functions only (cosines and a constant). This is why the C_{k} coefficients are 0 (the sine function is odd).
4.4 Exercise 4.8 of Boulet's book.

Note: to do problems (b) and (c), you need to study Matlab files linespectrum.m and Fourierseries.m on the CD \backslash Chapter 4 and create your m file.

- In the Matlab command window, you type: help eval (and then press the return key), and learn the Matlab built-in function "eval".
- Replace the string ' $=-\mathrm{j} * \mathrm{~A} /\left(\mathrm{k}^{*} \mathrm{pi}\right)^{\prime}$ ' (in linespectrum.m), which is the FS coefficient value for the signal in Figure 4.3, with the FS coefficient value for the signal in Figure 4.32
- Study lines 93-109 of Fourierseries.m and learn how to sum a number of harmonic components.
(a) Compute and sketch (magnitude and phase) the Fourier series coefficients of the sawtooth signal of Figure 4.12.

Figure 4.12: Periodic sawtooth signal in Exercise 4.8(a)
Answer:

The Fourier series coefficients are computed:

$$
\begin{aligned}
a_{0} & =\frac{1}{T} \int_{0}^{1} x(t) d t=\int_{0}^{0.5}(1-2 t) d t \\
& =\left[-\frac{1}{4}(1-2 t)^{2}\right]_{0}^{0.5}=\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
a_{k} & =\frac{1}{T} \int_{0}^{1} x(t) e^{-j k 2 \pi t} d t \\
& =\int_{0}^{0.5}(1-2 t) e^{-j k 2 \pi t} d t \\
& =\frac{-1}{j k 2 \pi}\left[(1-2 t) e^{-j k 2 \pi t}\right]_{0}^{0.5}-\frac{1}{j k \pi} \int_{0}^{0.5} e^{-j k 2 \pi t} d t \\
& =\frac{1}{j k 2 \pi}+\frac{1}{2(j k \pi)^{2}}\left[e^{-j k 2 \pi t}\right]_{0}^{0.5} \\
& =\frac{1}{j k 2 \pi}-\frac{1}{2(k \pi)^{2}}\left[e^{-j k \pi}-1\right] \\
& =\frac{-j}{k 2 \pi}+\frac{\left[1-(-1)^{k}\right]}{2(k \pi)^{2}}, k \neq 0
\end{aligned}
$$

The magnitude is obtained:

$$
\left|a_{k}\right|=\sqrt{\frac{1}{4(k \pi)^{2}}+\frac{\left[1-(-1)^{k}\right]^{2}}{4(k \pi)^{4}}}=\frac{1}{2(k \pi)} \sqrt{1+\frac{\left[1-(-1)^{k}\right]^{2}}{(k \pi)^{2}}},
$$

and it is plotted below.

The phase is given by:

$$
\angle a_{k}=\arctan \left(\frac{-1 /(2 k \pi)}{-\left[1-(-1)^{k}\right] / 2(k \pi)^{2}}\right)
$$

(b) Express $x(t)$ as its real Fourier series of the form:

$$
x(t)=a_{0}+2 \sum_{k=1}^{+\infty}\left[B_{k} \cos \left(k \omega_{1} t\right)-C_{k} \sin \left(k \omega_{1} t\right)\right]
$$

Answer:

Let $a_{k}=\alpha_{k}+j \beta_{k}$. The fundamental frequency is $\omega_{1}=2 \pi$. Note that the Fourier series coefficients can be written as:

$$
\begin{aligned}
x(t) & =a_{0}+\sum_{k=1}^{+\infty}\left(a_{k} e^{j k \omega_{1} t}+a_{-k} e^{-j k \omega_{1} t}\right)=a_{0}+\sum_{k=1}^{+\infty}\left(a_{k} e^{j k e_{1} t}+a_{k}^{*} e^{-j k \omega_{1} t}\right) \\
& =a_{0}+\sum_{k=1}^{+\infty}\left(\alpha_{k}+j \beta_{k}\right)\left(\cos \left(k \omega_{1} t\right)+j \sin \left(k \omega_{1} t\right)\right)+\left(\alpha_{k}-j \beta_{k}\right)\left(\cos \left(k \omega_{1} t\right)-j \sin \left(k \omega_{1} t\right)\right) \\
& =a_{0}+\sum_{k=1}^{+\infty} 2 \alpha_{k} \cos \left(k \omega_{1} t\right)-2 \beta_{k} \sin \left(k \omega_{1} t\right)
\end{aligned}
$$

and we can identify the coefficients $B_{k}=\alpha_{k}=\frac{\left[1-(-1)^{k}\right]}{2(k \pi)^{2}}, C_{k}=\beta_{k}=\frac{-1}{k 2 \pi}$. Thus,

$$
x(t)=\frac{1}{4}+\sum_{k=1}^{+\infty} \frac{\left[1-(-1)^{k}\right]}{(k \pi)^{2}} \cos (k 2 \pi t)+\frac{1}{k \pi} \sin (k 2 \pi t) .
$$

(c) Use MATLAB to plot, superimposed on the same figure, approximations to the signal over two periods by summing the first 5 , and the first 50 harmonic components of $x(t)$, i.e., by plotting $\tilde{x}(t)=\sum_{-N}^{N} a_{k} e^{j k \frac{2 \pi}{T_{t}}}$. Discuss your results.

Answer:

5 and 50 harmonic components:

The fifty-harmonic approximation is obviously a better representation of the sawtooth waveform, but significant ripple are seen in the plots of both truncated Fourier series, especially around the discontinuities.
(d) The sawtooth signal $x(t)$ is the input to an LTI system with impulse response $h(t)=e^{-t} \sin (2 \pi t) u(t)$. Let $y(t)$ denote the resulting periodic output. Find the frequency response $H(j \omega)$ of the LTI system. Give expressions for its magnitude $|H(j \omega)|$ and phase $\angle H(j \omega)$ as functions of ω. Find the Fourier series coefficients b_{k} of the output $y(t)$. Use your computer program of (c) to plot an approximation to the output signal over two periods by summing the first 50 harmonic components of $y(t)$. Discuss your results.

Answer:

Answer:

The frequency response of the system is given by

$$
\begin{aligned}
H(j \omega) & =\int_{0}^{+\infty} e^{-t} \sin (2 \pi t) e^{-j \omega t} d t \\
& =\frac{1}{2 j} \int_{0}^{+\infty}\left(e^{j 2 \pi t}-e^{-j 2 \pi t}\right) e^{-(1+j \omega) t} d t \\
& =\frac{1}{2 j} \int_{0}^{+\infty}\left(e^{-(1+j(\omega-2 \pi)) t}-e^{-(1+j j(\omega+2 \pi)) t}\right) d t \\
& =\frac{1}{2 j(1+j(\omega-2 \pi))}-\frac{1}{2 j(1+j(\omega+2 \pi))} \\
& =\frac{(1+j(\omega+2 \pi))-(1+j(\omega-2 \pi))}{2 j(1+j(\omega-2 \pi))(1+j(\omega+2 \pi))} \\
& =\frac{2 \pi}{1-\omega^{2}+4 \pi^{2}+j 2 \omega}
\end{aligned}
$$

Magnitude:

$$
|H(j \omega)|=\frac{2 \pi}{\left[\left(1-\omega^{2}+4 \pi^{2}\right)^{2}+4 \omega^{2}\right]^{1 / 2}}
$$

Phase:

$$
\angle H(j \omega)=\arctan \left(\frac{-2 \omega}{1-\omega^{2}+4 \pi^{2}}\right)
$$

Spectral coefficients of the output signal:

$$
\begin{aligned}
b_{k} & =H\left(j k \omega_{1}\right) a_{k}=\frac{2 \pi}{1-(k 2 \pi)^{2}+4 \pi^{2}+j 4 k \pi}\left(\frac{-j}{k 2 \pi}+\frac{\left[1-(-1)^{k}\right]}{2(k \pi)^{2}}\right) \\
& =\frac{1}{1-(k 2 \pi)^{2}+4 \pi^{2}+j 4 k \pi}\left(\frac{\left[1-(-1)^{k}\right]-j k \pi}{k^{2} \pi}\right)
\end{aligned}
$$

Truncated Fourier series with $N=50$ harmonic components:

The filter essentially lets only the DC and fundamental components pass through it.
4.5 Exercise 4.10 of Boulet's book.

Answer (a)
This is just our regular rectangular wave with $T_{1}=0.5$ and of amplitude 2 but that has been "lowered" by 1 and time-delayed by 0.5 . Fourier series coefficients are:

$$
\begin{aligned}
a_{0} & =\frac{1}{T} \int_{0}^{1} x(t) d t=-\frac{1}{2}, \\
a_{k} & =2 \frac{2 T_{1}}{T} \operatorname{sinc}\left(k \frac{2 T_{1}}{T}\right) e^{-j k \frac{2 \pi}{T} T_{1}} \\
& =\frac{1}{2} \operatorname{sinc}\left(k \frac{1}{4}\right) e^{-j k \frac{\pi}{4}}, \quad k \neq 0
\end{aligned}
$$

Magnitude:

$$
\left|a_{k}\right|=\frac{1}{2}\left|\operatorname{sinc}\left(k \frac{1}{4}\right)\right| .
$$

Phase: $\quad \angle a_{k}=\frac{1}{2} \operatorname{sinc}\left(k \frac{1}{4}\right) e^{-j k \frac{\pi}{4}}=-k \frac{\pi}{4}-\frac{\pi}{2}\left\{1-\operatorname{sgn}\left(\operatorname{sinc}\left(k \frac{1}{4}\right)\right)\right\}$

(b) $\quad x(t)=\sin (10 \pi t)+\cos (20 \pi t)$

Answer:

$$
\begin{aligned}
x(t) & =\frac{1}{2 j}\left(e^{j 10 \pi t}-e^{-j 10 \pi t}\right)+\frac{1}{2}\left(e^{j 20 \pi t}+e^{-j 20 \pi t}\right) \\
& =\frac{1}{2} e^{-j 20 \pi t}+\frac{j}{2} e^{-j 10 \pi t}-\frac{j}{2} e^{j 10 \pi t}+\frac{1}{2} e^{j 20 \pi t}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \omega_{0}=10 \pi, a_{0}=0 \\
& a_{-2}=\frac{1}{2}, a_{-1}=\frac{j}{2}, a_{1}=-\frac{j}{2}, a_{2}=\frac{1}{2}, \quad a_{k}=0, \quad \text { otherwise }
\end{aligned}
$$

Magnitude: $\left|a_{0}\right|=0,\left|a_{-2}\right|=\frac{1}{2},\left|a_{-1}\right|=\frac{1}{2},\left|a_{1}\right|=\frac{1}{2},\left|a_{2}\right|=\frac{1}{2}, \quad\left|a_{k}\right|=0$, otherwise.

Phase: $\angle a_{0}=0, \angle a_{-2}=0, \angle a_{-1}=\frac{\pi}{2}, \angle a_{1}=-\frac{\pi}{2}, \angle a_{2}=0, \angle a_{k}=0$, otherwise.

4.6

a. Answer

The Fourier series of $x(t) y(t)$ is
$c_{k}=\frac{1}{T} \int_{T}\left(\sum_{n=-\infty}^{\infty} a_{n} e^{j n \omega_{0} t} \sum_{l=-\infty}^{\infty} b_{l} e^{j l \omega_{0} t}\right) e^{-j k \omega_{0} t} d t=\frac{1}{T} \int_{T}\left(\sum_{n=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} a_{n} b_{l} e^{j(n+l) \omega_{0} t} e^{-j k \omega_{0} t} d t\right.$
$=\frac{1}{T} \sum_{n=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} a_{n} b_{l} \int_{T}\left(e^{j(n+l) \omega_{0} t} e^{-j k \omega_{0} t}\right) d t=\sum_{n=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} a_{n} b_{l} \delta(k-(n+l))=\sum_{n=-\infty}^{\infty} a_{n} b_{k-n}$
(b) Answer:
$y(t)=\sum_{k=-\infty}^{\infty} b_{k} e^{j k \omega_{0} t}$
${ }^{*} x(t)=\sum_{k=-\infty}^{\infty}{ }^{*} a_{k} e^{-j k \omega_{0} t}=\sum_{k=-\infty}^{\infty}{ }^{*}{ }_{-k} e^{j k \omega_{0} t}$
As $y(t)=x(t)$
Thus $\quad b_{k}=a_{-k}$

From part (a),
$c_{0}=\sum_{n=-\infty}^{\infty} a_{n} b_{-n}=\sum_{n=-\infty}^{\infty} a_{n} a_{-n}^{*}=\sum_{n=-\infty}^{\infty} a_{n}{ }^{*} a_{-n}=\sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2}$
From the Fourier series analysis equation, we have
$c_{k}=\frac{1}{T} \int|x(t)|^{2} e^{-j k \omega_{0} t} d t$
with $k=0$, we have
$c_{0}=\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2}$

