Assignment 3

Due September 29 (M), 2008.
$====================$ Part 1 (no submission is required) $==========================$

Practice makes perfect. Do and understand all exercises in Chapter 3 of Benoit Boulet's book.

Part 2 (Handwritten and submission are required)
3.1 Show that if the response of an LTI system to $x(t)$ is the output $y(t)$, then the response of the system to $x^{\prime}(t)=\frac{d x(t)}{d t}$ is $y^{\prime}(t)=\frac{d y(t)}{d t}$

Do this problem in three different ways:

1) Directly from the properties of linearity and time invariance and the fact that

$$
x^{\prime}(t)=\lim _{h \rightarrow 0} \frac{x(t)-x(t-h)}{h}
$$

2) By differentiating the convolution integral.
3) By representing the derivative operation using an LTI system called "differentiator", whose response to the input $\mathrm{x}(\mathrm{t})$ is $\mathrm{x}^{\prime}(\mathrm{t})$, and applying the commutative property of LTI systems.

Answer:

1) From the property of time invariance of LTI systems, we know that if $y(t)$ is the response to $x(t)$, then the input $x(t-h)$ lead to the output $y(t-h)$.
From the property of linearity of LTI systems, we have additivity and homogeneity, we know the input [x(t)-$x(t-h)] / h$ lead to the output $[y(t)-y(t-h)] / h$. taking limit as $h \rightarrow 0$, and the input $[x(t)-x(t-h)] / h$ becomes $x^{\prime}(t)$ and the output becomes $y^{\prime}(\mathrm{t})$.
2) $y^{\prime}(t)=\frac{d}{d t} \int_{-\infty}^{\infty} x(t-l) h(l) d l=\int_{-\infty}^{\infty} \frac{d}{d t}[x(t-l)] h(l) d l=\int_{-\infty}^{\infty} x^{\prime}(t-l) h(l) d l=x^{\prime}(t) * h(t)$
3)

The above 2 systems are equivalent according to the commutative property of LTI systems. Thus $y^{\prime}(t)=y_{1}(t)=$ $x^{\prime}(t) * h(t)$.
3.2 Derive the step response of the system described by the differential equation:

$$
\begin{equation*}
\frac{d y(t)}{d t}+a y(t)=\frac{d x(t)}{d t}-2 x(t) \tag{3.2}
\end{equation*}
$$

For the system to be BIBO stable, please specify the range of the parameter a.

Answer:

Step 1. Solve the setep response of the system with input being $x(t)=u(t)$:

$$
\begin{equation*}
\frac{d y(t)}{d t}+a y(t)=u(t) \tag{3.2a}
\end{equation*}
$$

The solution of Eq. (3.2a) is

$$
y_{l}(t)=y_{h}(t)+y_{p}(t)
$$

where $y_{h}(t)$ satisfies the homogeneous equation:

$$
\frac{d y_{h}(t)}{d t}+a y_{h}(t)=0
$$

$y_{h}(t)$ should have the form $y_{h}(t)=A e^{s t}$. Substituting $y_{h}(t)$ in the above equation with $A e^{s t}$, the following hold:

$$
A e^{s t}(s+a)=0
$$

Thus, for $y_{h}(t)$ to be non-zero, the following holds:

$$
s=-a \text {, and } y_{h}(t)=A e^{-a t} \text {. }
$$

$y_{p}(t)$ should have the same form as the input $u(t)$ for $t>0$. Let $y_{p}(t)=K$. Then

$$
y_{l}(t)=y_{h}(t)+y_{p}(t)=\left(A e^{a t}+K\right) u(t) .
$$

Substitute $y(t)$ in Eq. (3.2a) with above $y_{1}(\mathrm{t})$:

$$
\frac{d}{d t}\left[\left(A e^{-a t}+K\right) u(t)\right]+a\left(A e^{-a t}+K\right) u(t)=u(t)
$$

Then we have
i.e.,

$$
\left(-a A e^{-a t}\right) u(t)+\left(A e^{-a t}+K\right) \delta(t)+a\left(A e^{-a t}+K\right) u(t)=u(t)
$$

for the two sides of the above equation to be equal, the singularity functions on the left-hand and right-hand sides must match:

$$
\begin{equation*}
a K=1 \tag{3.2b}
\end{equation*}
$$

and

$$
\begin{equation*}
A+K=0 \tag{3.2c}
\end{equation*}
$$

thus $\quad K=1 / a, A=-K=-1 / a$
Therefore, the solution of Eq. (3.2a) is

$$
y_{1}(t)=\left[-\frac{1}{a} e^{-a t}+\frac{1}{a}\right] u(t)
$$

Step 2: According to the principle of superposition of LTI systems, the step response of Eq. (3.2) is

$$
\begin{aligned}
s(t) & =\frac{d y_{1}(t)}{d t}-2 y_{1}(t)=\frac{d}{d t}\left[\left(-\frac{1}{a} e^{-a t}+\frac{1}{a}\right) u(t)\right]-2\left(-\frac{1}{a} e^{-a t}+\frac{1}{a}\right) u(t) \\
& =\left(-\frac{1}{a} e^{-a t}+\frac{1}{a}\right) \delta(t)+e^{-a t} u(t)-2\left(-\frac{1}{a} e^{-a t}+\frac{1}{a}\right) u(t) \\
& =\left[\left(1+\frac{2}{a}\right) e^{-a t}-\frac{2}{a}\right] u(t)
\end{aligned}
$$

For the system to be BIBO stable, the real part of the zero of the characteristic polunomial must be negative. As the zero of the characteristic polynomial is $s=-a$, thus $\operatorname{Re}\{-a\}<0$ is required for the system to be stable.

Note:

1. The above solution $s(t)$ is the integral of the impulse response $h_{1}(t)$ given in Exercise 3.1 of Boulet's book.
2. The method in this anwer for obtaining step response does not use the initial conditions at $\mathrm{t}=0^{+}$to determin the coefficients A and K. They were obtained by matching the singularity functions on the left-hand and right-hand sides. This is because the differential equation holds for $-\infty<\mathrm{t}<\infty$, including the instant $t=0$ when the input $\mathrm{u}[\mathrm{t}]$ jumps from 0 to 1 .
3.3 Exercise 3.6 of Boulet' book.

Answer:

The characteristic polynomial of this system is:

$$
p(s):=2 s^{2}-2 s-24=2(s+3)(s-4) .
$$

Since one of the zeros of this polynomial has a positive real part, i.e., $s_{1}=4$, the system is unstable.
3.4 Exercise 3.8 of Boulet' book.

Answer:

Let $y[n]$ be the total amount in the account at the beginning of year n, and $x[n]$ be the amount deposited at the beginning of year n (included in $y[n]$.) The following first-order, causal LTI difference system initially at rest describes the evolution of the bank account:

$$
y[n]=(1+r) y[n-1]+x[n] .
$$

Note that this is an unstable system as the zero of the first-order characteristic polynomial, which is $1+r=1.06$, is larger than one. The amount at the end of the $50^{\text {th }}$ year can be computed by recursion in order to find the response of the system to the step input: $x[n]=1000 u[n-1]$:

$$
\begin{array}{rlrl}
n=1: & y[1] & =1.06 y[0]+1000 u[0] \\
& =1000 \\
n=2: & y[2] & =1.06 y[1]+1000 u[1] \\
& =1.06(1000)+1000 \\
n=3: & y[3] & =1.06 y[2]+1000 u[2] \\
& =(1.06)^{2}(1000)+1.06(1000) \\
& \vdots \\
y[n] & =1.06 y[n-1]+1000 u[n-1] \\
& =1000 \sum_{k=1}^{n}(1.06)^{k-1}
\end{array}
$$

At the end of the $50^{\text {th }}$ year:

$$
\begin{aligned}
(1+r) y[50] & =(1.06) 1000 \sum_{k=1}^{50}(1.06)^{k-1}=1060 \sum_{m=0}^{49}(1.06)^{m} \\
& =1060 \frac{1-(1.06)^{50}}{1-(1.06)}=1060 \frac{1-(1.06)^{50}}{-0.06}=\$ 307,756
\end{aligned}
$$

3.5 Exercise 3.10 of Boulet' book.

Answer:

Step 1: Set up the problem to calculate the impulse response of the left-hand side:

$$
2 \frac{d h_{a}(t)}{d t}+4 h_{a}(t)=\delta(t)
$$

Step 2: Find the initial condition of the corresponding homogeneous equation at $t=0^{+}$by integrating the above differential equation from $t=0^{-}$to $t=0^{+}$. Note that the impulse will be in the term $\frac{d h_{a}(t)}{d t}$, so $h_{a}(t)$ will have a finite jump at most. Thus we have:

$$
\int_{0^{-}}^{0^{+}} \frac{d h_{a}(\tau)}{d \tau} d \tau=h_{a}\left(0^{+}\right)=0.5
$$

hence $h_{a}\left(0^{+}\right)=0.5$ is our initial condition for the homogeneous equation for $t>0$:

$$
2 \frac{d h_{a}(t)}{d t}+4 h_{a}(t)=0 .
$$

Step 3: The characteristic polynomial is $p(s)=2 s+4$ and it has one zero at $s=-2$, which means that the homogeneous response has the form $h_{a}(t)=A e^{-2 t}$ for $t>0$. The initial condition allows us to determine the constant A :

$$
h_{a}\left(0^{+}\right)=A=0.5,
$$

so that

$$
h_{a}(t)=0.5 e^{-2 t} .
$$

Step 4: Apply the right-hand side of the differential equation to $h_{a}(t)$:

$$
\begin{aligned}
h(t) & =3 \frac{d h_{a}(t)}{d t}+2 h_{a}(t) \\
& =3 \frac{d}{d t}\left(0.5 e^{-2 t} u(t)\right)+e^{-2 t} u(t) \\
& =-3 e^{-2 t} u(t)+1.5 \delta(t)+e^{-2 t} u(t) \\
& =-2 e^{-2 t} u(t)+1.5 \delta(t)
\end{aligned}
$$

Sketch of impulse response:

3.6 Exercise 3.12 of Boulet's book.

Answer:

Step 1: Set up the problem to calculate the impulse response of the left-hand side of the equation

$$
\frac{d^{2} h_{a}(t)}{d t^{2}}+2 \frac{d h_{a}(t)}{d t}+2 h_{a}(t)=\delta(t)
$$

Step 2: Find the initial conditions of the corresponding homogeneous equation at $t=0^{+}$by integrating the above differential equation from $t=0^{-}$to $t=0^{+}$. Note that the impulse will be in the term $\frac{d^{2} h_{a}(t)}{d t^{2}}$, so $\frac{d h_{a}(t)}{d t}$ will have a finite jump at most. Thus we have

$$
\int_{0^{-}}^{0^{+}} \frac{d^{2} h_{a}(\tau)}{d \tau^{2}} d \tau=\frac{d h_{a}\left(0^{+}\right)}{d t}=1
$$

hence $\frac{d h_{a}\left(0^{+}\right)}{d t}=1$ is one of our two initial conditions for the homogeneous equation for $t>0$

$$
\frac{d^{2} h_{a}(t)}{d t^{2}}+2 \frac{d h_{a}(t)}{d t}+2 h_{a}(t)=0 .
$$

Since $\frac{d h_{a}(t)}{d t}$ has a finite jump from $t=0^{-}$to $t=0^{+}$, the other initial condition is $h_{a}\left(0^{+}\right)=0$.

Step 3: The characteristic polynomial is $p(s)=s^{2}+2 s+2$ and it has zeros at $s_{1}=-1+j, s_{2}=-1-j$, which means that the homogeneous response has the form $h_{a}(t)=A e^{(-1+j) t}+B e^{(-1-j) t}$ for $t>0$. The initial conditions allow us to determine the constants A and B :

$$
\begin{aligned}
& h_{a}\left(0^{+}\right)=0=A+B, \\
& \frac{d h_{a}\left(0^{+}\right)}{d t}=1=(-1+j) A+(-1-j) B
\end{aligned}
$$

so that $A=-\frac{j}{2}, B=\frac{j}{2}$ and

$$
\begin{aligned}
h_{a}(t) & =-\frac{j}{2} e^{(-1+j) t} u(t)+\frac{j}{2} e^{(-1-j) t} u(t) \\
& =\frac{e^{(-1+j) t}-e^{(-1-j) t}}{2 j} u(t) \\
& =e^{-t} \sin (t) u(t)
\end{aligned}
$$

Step 4: Apply the right-hand side of the differential equation to $h_{a}(t)$ to obtain $h(t)$.

$$
\begin{aligned}
h(t) & =-3 \frac{d h_{a}(t)}{d t}+h_{a}(t) \\
& =-3 \frac{d}{d t}\left[e^{-t} \sin t u(t)\right]+e^{-t} \sin t u(t) \\
& =-3\left[-e^{-t} \sin t u(t)+e^{-t} \cos t u(t)+e^{-t} \sin t \delta(t)\right]+e^{-t} \sin t u(t) \\
& =e^{-t} \cos t u(t)+4 e^{-t} \sin t u(t)
\end{aligned}
$$

