Assignment 2
Due Sep 22 (M) before class.
$=====================$ Part 1 (no submission is required)============================
Practice makes perfect. Do and understand all exercises in Chapter 2 of Benoit Boulet's book.
====================Part 2 (Handwritten and submission are required)===================
2.1 Exercise 2.4 of Boulet's book.

Answer:

$$
\begin{aligned}
\sum_{n=-\infty}^{+\infty}\left|(-0.9)^{n} u[n-4]\right| & =\sum_{n=4}^{+\infty}\left|(-0.9)^{n}\right|=\sum_{n=4}^{+\infty}(0.9)^{n}=\sum_{m=0}^{+\infty}(0.9)^{m+4} \\
& =(0.9)^{4} \sum_{m=0}^{+\infty}(0.9)^{m}=(0.9)^{4} \frac{1}{1-0.9}=10(0.9)^{4}<+\infty
\end{aligned}
$$

The impulse response is absolutely summable, hence the system is stable. The system is also causal as $h[n]=0, n \leq 0$.
2.2 Exercise 2.6 of Boulet's book

Answer:

SOLUTION 1: Let us time-reverse and shift the impulse response.

The intervals of time of interest are:
$t<-1$: no overlap, so $y(t)=0$.
$-1 \leq t<3$: overlap over $0 \leq \tau<t+1$, so

$$
\begin{aligned}
y(t) & =\int_{0}^{t+1} x(\tau) h(t-\tau) d \tau=-\int_{0}^{t+1} e^{-t+\tau-1} d \tau=-e^{-1-t}\left[e^{t}\right]_{0}^{t+1} . \\
& =-e^{-1-t}\left[e^{t+1}-1\right]=e^{-t-1}-1
\end{aligned}
$$

$t \geq 3$: overlap over $0 \leq \tau<4$, so

$$
\begin{aligned}
y(t) & =\int_{0}^{4} x(\tau) h(t-\tau) d \tau=-\int_{0}^{4} e^{-t-1+\tau} d \tau=-e^{-t-1} \int_{0}^{4} e^{\tau} d \tau=-e^{-t-1}\left[e^{\tau}\right]_{0}^{4} . \\
& =-e^{-t-1}\left[e^{4}-1\right]=-e^{-(t-3)}+e^{-(t+1)}=\left(e^{-1}-e^{3}\right) e^{-t}
\end{aligned}
$$

Finally, piecing all three intervals together, we get:

$$
y(t)=\left\{\begin{array}{cc}
0, & t<-1 \\
e^{-t-1}-1, & -1 \leq t<3 \\
\left(e^{-1}-e^{3}\right) e^{-t}, & t \geq 3
\end{array}\right.
$$

SOLUTION 2: Time reversing and shifting $x(t)$.

The intervals of interest are:
$t<-1$: no overlap, so $y(t)=0$.
$-1 \leq t<3$: overlap over $-1 \leq \tau<t$, so

$$
\begin{aligned}
y(t) & =\int_{-1}^{t} h(\tau) x(t-\tau) d \tau=-\int_{-1}^{t} e^{-\tau-1} d \tau=e^{-1}\left[e^{-t}\right]_{-1}^{t} . \\
& =e^{-1}\left[e^{-t}-e\right]=e^{-t-1}-1
\end{aligned}
$$

$t \geq 3$: overlap over $t-4 \leq \tau<t$, so

$$
\begin{aligned}
y(t) & =\int_{t-4}^{t} h(\tau) x(t-\tau) d \tau=-\int_{t-4}^{t} e^{-\tau-1} d \tau=e^{-1}\left[e^{-\tau}\right]_{t-4}^{t} . \\
& =e^{-t-1}-e^{-t+3}
\end{aligned}
$$

Finally, piecing all three intervals together, we get:

$$
y(t)=\left\{\begin{array}{cc}
0, & t<-1 \\
e^{-t-1}-1, & -1 \leq t<3 \\
\left(e^{-1}-e^{3}\right) e^{-t}, & t \geq 3
\end{array}\right.
$$

2.3 Exercise 2.8 of Boulet's book.

SOLUTION 1: Let's time-reverse and shift the impulse response.

The intervals of time of interest are:
$t<0$: no overlap, so $y(t)=0$.
$0 \leq t<2$: overlap over $-1 \leq \tau<t-1$, so

$$
y(t)=\int_{-1}^{t-1} x(\tau) h(t-\tau) d \tau=\int_{-1}^{t-1} e^{1+\tau-t} d \tau=e^{1-t}\left[e^{\tau}\right]_{-1}^{t-1}=e^{1-t}\left[e^{t-1}-e^{-1}\right]=1-e^{-t} .
$$

$t \geq 2$: overlap over $-1 \leq \tau<1$, so

$$
\begin{aligned}
y(t) & =\int_{-1}^{1} x(\tau) h(t-\tau) d \tau=\int_{-1}^{1} e^{l+\tau-t} d \tau=e^{l-t}\left[e^{t}\right]_{-1}^{1} . \\
& =e^{1-t}\left[e^{1}-e^{-1}\right]=e^{-t+2}-e^{-t}=e^{-t}\left(e^{2}-1\right)
\end{aligned}
$$

Finally, piecing all three intervals together, we get:

$$
y(t)=\left\{\begin{array}{cc}
0, & t<0 \\
1-e^{-t}, & 0 \leq t<2 \\
e^{-t}\left(e^{2}-1\right), & t \geq 2
\end{array}\right.
$$

SOLUTION 2: Time reversing and shifting $x(t)$.

$t<0$: no overlap, so $y(t)=0$.
$0 \leq t<2$: overlap over $1 \leq \tau<t+1$, so

$$
\begin{aligned}
y(t) & =\int_{1}^{t+1} h(\tau) x(t-\tau) d \tau=\int_{1}^{t+1} e^{1-\tau} d \tau=-\left[e^{1-\tau}\right]_{1}^{t+1} . \\
& =-\left[e^{-t}-1\right]=1-e^{-t}
\end{aligned}
$$

$t \geq 2$: overlap over $t-1 \leq \tau<t+1$, so

$$
\begin{aligned}
y(t) & =\int_{t-1}^{t+1} h(\tau) x(t-\tau) d \tau=\int_{t-1}^{t+1} e^{1-\tau} d \tau=-\left[e^{1-r}\right]_{t-1}^{t+1} . \\
& =-\left(e^{-t}-e^{2-t}\right)=e^{-t}\left(e^{2}-1\right)
\end{aligned}
$$

Finally, piecing all three intervals together, we get:

$$
y(t)=\left\{\begin{array}{cc}
0, & t<0 \\
1-e^{-t}, & 0 \leq t<2 \\
e^{-t}\left(e^{2}-1\right), & t \geq 2
\end{array}\right.
$$

2.4 Exercise 2.10 of Boulet’s book.

(a) Compute the impulse response $h(t)$ of the overall system.

Answer:

$$
\begin{aligned}
h(t) & =h_{1}(t) * h_{2}(t)=e^{-t} u(t) * e^{-2 t} u(t) \\
t & <0: \text { no overlap so } y(t)=0 \\
t & \geq 0 \\
h(t) & =\int_{0}^{t} h_{1}(\tau) h_{2}(t-\tau) d \tau=\int_{0}^{t} e^{-\tau} e^{-2(t-\tau)} d \tau=e^{-2 t} \int_{0}^{t} e^{\tau} d \tau \\
& =e^{-2 t}\left[e^{\tau}\right]_{0}^{t}=e^{-2 t}\left[e^{t}-1\right]=e^{-t}-e^{-2 t} \\
h(t) & =\left(e^{-t}-e^{-2 t}\right) u(t)
\end{aligned}
$$

(b) Find an equivalent system (same impulse response) configured as a parallel interconnection of two LTI subsystems.

Answer:
From the expression $h(t)=\left(e^{-t}-e^{-2 t}\right) u(t)$, it is clear that the system below has the same impulse response:

(c) Sketch the input signal $x(t)$. Compute the output signal $y(t)$.

Answer:

$$
\begin{aligned}
\begin{aligned}
y(t) & =x(t) * h(t)=x(t) *\left[e^{-t} u(t)-e^{-2 t} u(t)\right] \\
& =\left(e^{-(t+1)}-e^{-2(t+1)}\right) u(t+1)+\underbrace{[u(t)-2(t-2)]}_{p(t)} *\left[e^{-t} u(t)-e^{-2 t} u(t)\right] \\
& =\left(e^{-(t+1)}-e^{-2(t+1)}\right) u(t+1)+\underbrace{p(t) * e^{-t} u(t)}_{y_{1}(t)}-\underbrace{p(t) * e^{-2 t} u(t)}_{y_{2}(t)} \\
t & <0: y_{1}(t)=y_{2}(t)=0 \\
0 & \leq t \leq 2: \\
y_{1}(t) & =\int_{0}^{t} e^{-(t-\tau)} d \tau=e^{-t}\left[e^{\tau}\right]_{0}^{t}=1-e^{-t} \\
y_{2}(t) & =\int_{0}^{t} e^{-2(t-t)} d \tau=e^{-2 t}\left[e^{2 \tau}\right]_{0}^{t}=1-e^{-2 t} \\
t & >2: \\
y_{1}(t) & =\int_{0}^{2} e^{-(t-\tau)} d \tau=e^{-t}\left[e^{\tau}\right]_{0}^{2}=\left(e^{2}-1\right) e^{-t} \\
y_{2}(t) & =\int_{0}^{2} e^{-2(t-t)} d \tau=e^{-2 t}\left[e^{2 \tau}\right]_{0}^{2}=\left(e^{4}-1\right) e^{-2 t}
\end{aligned}
\end{aligned}
$$

Finally, the overall response of the system is:

$$
y(t)=\left\{\begin{array}{cc}
0 & t<-1 \\
e^{-(t+1)}-e^{-2(t+1)}, & -1 \leq t<0 \\
e^{-(t+1)}-e^{-2(t+1)}-e^{-t}+e^{-2 t}, & 0 \leq t \leq 2 \\
\left(e^{2}+e^{-1}-1\right) e^{-t}-\left(e^{4}+e^{-2}-1\right) e^{-2 t} & t>2
\end{array}\right.
$$

2.5 It is known that

$$
\begin{aligned}
& x[n] \neq 0 \text {, for } N 2 \leq n \leq N 1 \\
& h[n] \neq 0 \text {, for } N 4 \leq n \leq N 3 \\
& y[n]=x[n] * h[n] \neq 0 \text {, for } N 6 \leq n \leq N 5
\end{aligned}
$$

Please determine the duration of $\mathrm{y}[\mathrm{n}]$.
Answer:
The length of $x[n]$ is $\mathrm{L} 1=\mathrm{N} 1-\mathrm{N} 2+1$. The length of $\mathrm{h}[\mathrm{n}]$ is $\mathrm{L} 2=\mathrm{N} 3-\mathrm{N} 4+1$. The length of $\mathrm{y}[\mathrm{n}]$ is $\mathrm{L} 3=\mathrm{L} 1+\mathrm{L} 2-1$.
2.6 It is known that the impulse response of a LTI system is $h[n]=2^{-n}, n>=0$. The input signal of the system is $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]-2 \mathrm{u}[\mathrm{n}-5]$.

Please derive the response of the system to $\mathrm{x}[\mathrm{n}]$.

Answer:

Let the step response of the system be $s[n]$. Then, the response of the system to $u[n-5]$ is $s[n-5]$. Then the response of the system to $u[n]-2 u[n-5]$ is $s[n]-2 s[n-5]$.
$s[n]=\sum_{k=0}^{n} h[k]=\sum_{k=0}^{n} 2^{-k}=\frac{1-0.5^{n+1}}{1-0.5}$, for $\mathrm{n}>=0$
so, the response to $\mathrm{x}[\mathrm{n}]$ is
$y[n]=\frac{1-0.5^{n+1}}{1-0.5}-2 \frac{1-0.5^{n-5+1}}{1-0.5}=\frac{-1-0.5^{n}\left(0.5-2^{5}\right)}{0.5}=-2-0.5^{n}\left(1-2^{6}\right)=-2+63(1 / 2)^{n}$
2.7 Calculate the convolution $y(t)=f(t) * f(t)$, where $f(t)=u(t)-u(t-1)$, and sketch $y(t)$.

Answer :
For $\mathrm{t}<0, \mathrm{f}(\mathrm{t}-\tau)$ and $\mathrm{f}(\tau)$ have no overlap, i.e., $\mathrm{f}(\mathrm{t}-\tau) \mathrm{f}(\tau)=0$. Thus $\mathrm{y}(\mathrm{t})=0$.
For $0<=t<=1$:

$$
y(t)=\int_{0}^{t} d \tau=t
$$

For $1<=t<=2$:

$$
y(t)=\int_{t-1}^{1} d \tau=2-t
$$

For $\mathrm{t}>=2: \quad \mathrm{y}(\mathrm{t})=0$

Note : Combinmg graphical memod and anaysis method makes convolutions clear and simple.
2.8 Calculate the convolution $y(t)=f(t) * f(t)$, where $f(t)=u(t-1)-u(t-2)$, and sketch $y(t)$.

Answer : $\mathrm{y}(\mathrm{t})$ is the delayed version of the answer to 2.7: shift $\mathrm{y}(\mathrm{t})$ obtained in 2.7 to the right by 2.

$2.9 \mathrm{f}_{1}(\mathrm{t})=\delta(\mathrm{t}), \mathrm{t}_{2}(\mathrm{t})=\cos \left(\omega \mathrm{t}+4 \mathrm{~b}^{\circ}\right)$, calculate $\mathrm{f}_{1}(\mathrm{t})^{*} \mathrm{f}_{2}(\mathrm{t})$
Answer : $\delta(\mathrm{t})^{*} \mathrm{f}_{2}(\mathrm{t})=\mathrm{f}_{2}(\mathrm{t})=\cos \left(\omega \mathrm{t}+45^{\circ}\right)$,
2.10 Calculate $f_{1}(t) * f_{2}(t)$, where $f_{1}(t)=\sin (t) u(t), f_{2}(t)=u(t-1)$. (hint: step response of $f_{1}(t)$)

Answer : $f_{1}(t)$ can be viewed as an impulse response of a system. The step response of the system defined by $f_{1}(t)$ is the running integral:

$$
s(t)=\int_{0}^{t} \sin (\tau) u(\tau) u(t-\tau) d \tau=\int_{0}^{t} \sin (\tau) d \tau=-\cos t+1 \text { for } t>0
$$

Then, the response of the system defined by $f_{1}(t)$ to $u(t-1)$ is $s(t-1)=1-\cos (t-1)$ for $t>1$, i.e., $\mathrm{f}_{1}(\mathrm{t}) * \mathrm{f}_{2}(\mathrm{t})=[1-\cos (\mathrm{t}-1)] \mathrm{u}(\mathrm{t}-1)$.
2.11 Calculate $\mathrm{f}_{1}(\mathrm{t})^{*} \mathrm{f}_{2}(\mathrm{t})$, where $\mathrm{f}_{1}(\mathrm{t})=1, \mathrm{f}_{2}(\mathrm{t})=\mathrm{e}^{-(\mathrm{t}+1)} \mathrm{u}(\mathrm{t}+1)$

Answer : 1

$$
\begin{aligned}
f_{1}(t) * f_{2}(t) & =\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau=\int_{-\infty}^{t+1} e^{-(t-\tau+1)} u(t-\tau+1) d \tau=\int_{-\infty}^{t+1} e^{-(t-\tau+1)} d \tau \\
& =e^{-t+\tau-1} \begin{array}{l}
\tau=t+1 \\
\tau=-\infty \\
\tau=1
\end{array}=1-0=1
\end{aligned}
$$

2.12 Calculate the convolution $y(t)=x(t) * h(t)$, where $x(t)$ and $h(t)$ are shown below.

Answer : The output values for different ranges of time shift t can be calculated from the corresponding overlapping areas (triangle or trapezoid are formed when shifting $x(-\tau)$ from the left to the right). $y(t)=\left\{\begin{array}{c}\frac{a b}{4} t^{2}, \quad 0 \leq t \leq 1 \\ \frac{a b}{4}(2 t-1), \quad 1 \leq t \leq 2 \\ \frac{a b}{4}\left(3+2 t-t^{2}\right), \quad 2 \leq t \leq 3 \\ 0, \quad \text { otherwise }\end{array}\right.$

