ECSE306 Midterm 1, September 30, 2008

Name: \qquad Student number: \qquad

1. (10 points) Please fill in "Yes" or "No" according to the systems' properties

Systems	$2 y[n]=x[n-1]+1$	$2 d y(t) / d t+y(t)=2 x(t) \cos (2 t)$
Memory-less?	No	Yes
BIBO Stable?	Yes	Yes
Linear?	No	Yes
Causal?	Yes	Yes
Time-invariant?	Yes	No

2. (10 points) Please fill in "Yes" or "No" according to the signals' properties

Signals	$\mathrm{x}[\mathrm{n}]=\cos [5 \mathrm{n}] \sin [6 \mathrm{n}]$	$\mathrm{x}(\mathrm{t})=\sin (\mathrm{t}) \mathrm{e}^{\mathrm{j} 3 \pi \mathrm{t}}$
Periodic?	No	No
Even?	No	No
Odd?	Yes	No
Finite-power?	Yes	Yes
Finite-energy?	No	No

3. (10 points) Compute $y(t)=x(t) * h(t)$, where $x(t)=e^{-t} u(t+1)$, and $h(t)=e^{-t / 2} u(t)$.

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=\int_{-1}^{t} e^{-\tau} u(\tau+1) e^{-(t-\tau) / 2} u(t-\tau) d \tau=e^{-t / 2} \int_{-1}^{t} e^{-\tau / 2} d \tau \\
& =-\left.2 e^{-t / 2} e^{-\tau / 2}\right|_{-1} ^{t}=-2 e^{-t / 2}\left(e^{-t / 2}-e^{1 / 2}\right), \quad t \geq-1
\end{aligned}
$$

4. (15 points) Compute $y[n]=x[n] * h[n]$, where $x[n]=u[n+1]+u[n+3]$, and $h[n]=2^{-n} u[n]$. (hint: to simplify the calculation, you may apply the principle of superposition).

Answer:
Let the input be $\mathrm{x}_{1}[\mathrm{n}]=\mathrm{u}[\mathrm{n}+1]$, then the corresponding output is:

$$
\begin{aligned}
y_{1}[n] & =\sum_{k=-\infty}^{\infty} x_{1}[k] h[n-k]=\sum_{k=-1}^{n} u[k+1] 2^{-(n-k)} u[n-k]=\sum_{k=-1}^{n} 2^{-(n-k)}=2^{-n} \sum_{k=-1}^{n} 2^{k}=2^{-n}\left(2^{-1}+\sum_{k=0}^{n} 2^{k}\right) \\
& =2^{-n}\left(2^{-1}+\frac{1-2^{n+1}}{1-2}\right)=2^{-n}\left(0.5-1+2^{n+1}\right)=-2^{-n-1}+2 \\
y_{1}[n] & =\left(-2^{-n-1}+2\right) u[n+1]
\end{aligned}
$$

For the input $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}+1]+\mathrm{u}[\mathrm{n}+3]$, the output is

$$
y[n]=y_{1}[n]+y_{1}[n+2]=\left(-2^{-n-1}+2\right) u[n+1]+\left(-2^{-n-3}+2\right) u[n+3]
$$

5. (15 points)

5a. (10 point) Derive the impulse response of the system below, where a and b are constant, and the systems are initially at rest.

$$
a \frac{d y(t)}{d t}+b y(t)=\frac{d x(t)}{d t}
$$

5 b. (5 points) Indicate the condition for the system to be stable.

Answer:
5a. First derive the impulse response of for homogeneous equation:

$$
a \frac{d y(t)}{d t}+b y(t)=\delta(t)
$$

The homogeneous solution is $h_{a}(t)=A e^{-b t / a} u(t)$.
Substitute $y(t)$ in the above Eq. with $h_{a}(t)$:

$$
a\left[-\frac{b}{a} A e^{-b t / a} u(t)+A e^{-b t / a} \delta(t)\right]+b A e^{-b t / a} u(t)=\delta(t)
$$

For the two sides to be equal, $\mathrm{A} a=1$, i.e., $\mathrm{A}=1 / \mathrm{a}$. Thus, the impulse response for the homogeneous equation is $h_{a}(t)=(1 / a) e^{-b t / a} u(t)$
As the input is the derivative of $x(t)$, then according to the principle of superposition, the impulse response for the original equation is $h(t)=\mathrm{dh}_{\mathrm{a}}(\mathrm{t}) / \mathrm{dt}$:
$h(t)=\frac{d h_{a}(t)}{d t}=\frac{d}{d t}\left\{\frac{1}{a} e^{-b t / a} u(t)\right\}=-\frac{b}{a^{2}} e^{-b t / a} u(t)+\frac{1}{a} e^{-b t / a} \delta(t)=-\frac{b}{a^{2}} e^{-b t / a} u(t)+\frac{1}{a} \delta(t)$

5 b . for the system to be stable, the zero of the characteristic polynomial should have negative real part, i.e., $\operatorname{Re}\{-b / a\}<0$.
6. (20 points)
a. (15 point) Derive the impulse response of the system $a y[n]+b y[n-1]=x[n-2]$, where a and b are constant, and the systems are initially at rest.
b. (5 points) Indicate the condition for the above system to be stable.

Answer:
a. Solve for the impulse response for the homogeneous Eq.: $a y[n]+b y[n-1]=\delta[n]$

The homogeneous solution is $h_{a}[n]=A z^{n} u[n]$. Substituting it into the above Eq.:

$$
a A z^{n} u[n]+b A z^{n-1} u[n-1]=\delta[n]
$$

for $\mathrm{n}=0$,

$$
a A=\delta[0]=1
$$

for $\mathrm{n}>=1$,

$$
a A z^{n}+b A z^{n-1}=0
$$

Then $\mathrm{A}=1 / \mathrm{a}, \mathrm{z}=-\mathrm{b} / \mathrm{a}$, and $h_{a}[n]=(1 / a)(-\mathrm{b} / a)^{n} u[n]$.
According to the superposition, the impulse response for the original Eq. is

$$
h[n]=h_{a}[n-2]=(1 / a)(-b / a)^{n-2} u[n-2] .
$$

b. For the system to be stable, $|-\mathrm{b} / \mathrm{a}|<1$ should be satisfied.
7. (15 points) A system is composed of an inter connection of other 3 systems, as shown below. The impulse responses of the 3 systems are $h_{1}[n]=-u[n-1], h_{2}=\delta[n-5]$, and $h_{3}[n]=u[n]-u[n-1]$, respectively. Derive the impulse response of the system.

Answer:
The impulse response is $h[n]=\left(h_{1}[n]-h_{2}[n]\right) * h_{3}[n]=(-u[n-1]-\delta[n-5]) *(u[n]-u[n-1])$

$$
h[n]=(-u[n-1]-\delta[n-5]) * \delta[n]=-u[n-1]-\delta[n-5]
$$

