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Chapter 1

Introduction

1.1 Randomness versus determinism

Determinism in science and engineering:

• Deterministic view in science: provided sufficient information is available

about the initial state and operating conditions of a natural process or

a man-made system, its future behavior can be predicted exactly.

• This operational viewpoint has been the prevailing one in most of your

college and university education (mechanics, circuit theory, etc.)

• A typical example is provided by classical mechanics:

- Consider the motion of a particle under the influence of various

forces in three-dimensional space.

- If we know the initial position and velocity vectors of the particle,

its mass and the total force field, Newton’s laws can be used to

calculate (i.e. predict) the future trajectory of the particle.
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The concept of randomness:

• The above view is highly idealistic: In most ”real-life” scientific and

engineering problems, as well as many other situations of interest (e.g.

games of chance), we cannot do exact predictions about the phenomena

or systems under consideration.

• Two basic reasons for this may be identified:

- we do not have sufficient knowledge of the initial state of the system

or the operating conditions (e.g. motion of electrons in a micro-

processor circuit).

- due to fundamental physical limitations, it is impossible to make

exact predictions (e.g. uncertainty principle in quantum physics)

• We refer to such phenomena or systems as random, in the sense that

there is uncertainty about their future behavior: a particular result or

situation may or may not occur.

• The observation of specific quantities derived from such a random system

or phenomenon is often referred to as a random experiment.
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Examples:

• Consider the following game of chance:

- We roll an ordinary six-sided die once and observe the number show-

ing up, also called outcome.

- Possible outcomes are represented by the set of numbers S = {1, 2, 3,
4, 5, 6}.

- We cannot predict what number will show up as a result of this

experiment.

- Neither can we predict that a related event A, such as obtaining an

even number (represented by A = {2, 4, 6}), will occur.

• Consider a more sophisticated example from communications engineer-

ing:

- Using an appropriate modulation scheme, we transmit an analog

speech signal s(t) over a radio channel.

- Due to channel and receiver noise, and other possible disturbances

during the transmission, the received signal r(t) is generally different

from the transmitted one, i.e. s(t).

- In general, it is not possible for the radio engineer to predict the

exact shape of the error signal n(t) = r(t) − s(t).
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1.2 The object of probability

Regularity in randomness:

• OK, we cannot predict with certainty the particular outcome in a single

realization of a random experiment, but...

• In many practical situations of interest (games of chance, digital commu-

nications, etc..), it has been observed that when a random experiment

is repeated a large number of times, the sequence of results so obtained

shows a high degree of regularity.

• Let us be more specific: Suppose we repeat a random experiment (e.g.

rolling a die) n times. Let η(A, n) be the number of times that a certain

event A occur (e.g. the result is even). It has been observed that

η(A, n)

n
→ constant as n→ ∞ (1.1)

• The ratio η(A, n)/n is called the relative frequency.

• The constant provides a quantitative measure of the likelihood of A.
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Example:

• Consider a simple experiment consisting in flipping a coin. Let A denote

the event that a head shows up.

• Now suppose this experiment is repeated n times. The quantity η(A, n)

simply represents the number of times that head shows up, out of n

similar flips of the coin.

• Assuming that the coin is fair (unloaded), we expect the ratio η(A, n)/n

to approach 1/2 as n gets larger and larger.

• Results of a computer simulation experiment:

- Sequence of observed outcomes: THTHHH...

- Relative frequency versus n:
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Goal of probability theory:

• To provide quantitative measures of the likelihood of various events.

These measures will be called probabilities.

• To provide standard mathematical models for the efficient description

and computation of such probabilities.

• To provide the tools and techniques necessary for computing the prob-

ability of more complex events, and related quantities, from the proba-

bilities of simpler events (deductive theory).

• To provide fundamental insight, mathematical formalism, and general

guidance about certain more philosophical aspects and questions of the

theory. For example, why do relative frequencies converge?
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Notes on applications:

• Probability theory finds applications in almost every branches of nat-

ural and social sciences as well as engineering: mathematical statistics,

physical sciences, computer sciences, essentially all fields of engineering

(electrical, mechanical, industrial, etc.), economy and finance, behav-

ioral sciences, epidemiology, etc.

• In electrical and computer engineering: Probability theory is very useful

in the study of systems or problems involving the manipulation of large

quantities of data having a random nature: rate of failures in micro-

processor production, performance of digital radio receiver, throughput

of communication network, data compression algorithms, etc.

• Whenever we want to analyze or design such engineering systems, prob-

ability theory can provide extremely valuable information.

• In fact, in many situations of interest, probability is the only reliable

and practical tool available for the study of this type of systems.
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1.3 Approaches to probability

Probability draws its origins in the games of chance and specially in the

development of approaches and strategies for maximizing the odd of winning

in such games. Over the last 500 years, various definitions of probability, and

eventually probability theories, have evolved. Some of the most well known

definitions are the following:

- classical approach

- relative frequency

- axiomatic approach
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Classical approach (Laplace 1812):

• Consider a random experiment in which the set S of possible outcomes

is finite, containing N elements.

• Suppose that an event of interest to us, say A a subset of S, contains

NA elements.

• In the classical approach, the probability of A is defined as

P (A) =
NA

N
(1.2)

• Example: A = even number showing up when rolling a die once

S = {1, 2, 3, 4, 5, 6} ⇒ N = 6

A = {2, 4, 6} ⇒ NA = 3

P (A) = 3/6 = 1/2.

• Problems with classical approach:

- too restrictive (S must be finite)

- definition of elements may lead to ambiguity
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Relative frequency (von Mises 1919):

• Suppose that we can repeat the random experiment an ∞ of times.

• Define the probability of event A as

P (A) = lim
n→∞

η(A, n)

n
(1.3)

• Problems:

- don’t know if the limit exists?

- even if limit exists, cannot repeat experiment an ∞ of times?

- what is the error introduced if a large, but finite number of expere-

ments is used in computing P (A)?
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Axiomatic approach (Kolmogorov, 1933):

• We only require that the function P (A) satisfy a minimal number of

axioms, from which more complex probabilities (and related quantities)

may be computed in a systematic manner.

• Simplified version of the axioms:

A1. For any event A, P (A) ≥ 0

A2. Let S denote the set of all possible outcomes, then P (S) = 1

A3. If events A and B cannot occur simultaneously, then P (A or B) =

P (A) + P (B)

• The theory is developed in a rigorous and systematic way around this

irreducible set of axioms.

• As long as the axioms are satisfied, the definition and interpretation of

the function P (A) in a particular application are left to the user.

• This is by far the most commonly used theory nowadays: It provides fun-

damental justification for the classical and relative frequency approaches.

• The axiomatic approach is the one used in this course.
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Chapter 2

Background material

Chapter overview:

• Review of set theory

• Combinatorial methods

2.1 Set theory
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2.1.1 Basic terminology

Definition of a set:

• A set is a collection of objects (concrete or abstract), called elements,

that usually share some common attributes, but are not otherwise re-

stricted in any fashion.

• The curly brackets { and } are used as delimiters when specifying the

content of a set. This may be achieved by either listing all the elements

of the set explicitly, as is

{1, 2, 3, 4, 5, 6} (2.1)

or by stating the common properties satisfied by its elements, as in

{a : a is a positive integer ≤ 6} (2.2)

In the latter case, the notation “a :” should read “all a such that”.

• To indicate that an object a is an element of a set A, we write a ∈ A; we

also say that a is a member of, or belongs to, A. If a is not an element

of A, we write a 6∈ A.

• Two sets A and B are identical (or equal) if and only if (iff) they have

the same elements, in which case we write A = B. If A and B are not

identical, we write A 6= B.

• Example: Let A = {1, 2, ..., 6} and B = {2, 4, 6}. Then A 6= B because

1 ∈ A while 1 6∈ B.
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Subset:

• If every element of a set A is also an element of a set B, we say that A

is contained in B, or that A is a subset of B, and write A ⊆ B.

• If A is a subset of B but there exists b such that b ∈ B and b 6∈ A, we

sometimes say that A is a proper subset of B and write A ⊂ B.

• The negations of the set relations ⊆ and ⊂ are denoted by 6⊆ and 6⊂,

respectively.

• Example: let A = {1, 2, ..., 6}, B = {2, 4, 6} and C = {0, 1}, then

B ⊆ A, B ⊂ A, C 6⊆ A, etc.

Sample space and empty set:

• In practical applications of set theory, all sets of interest in a given situ-

ation are usually subsets of a larger set called sample space, or universal

set, and denoted by the letter S.

• It is also common practice to introduce a degenerate set containing no

elements; the latter is called the empty set, or null set, and is denoted

by the symbol ∅.
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Theorem 2.1: Let A, B and C denote arbitrary subsets of a sample space S.

The following relations hold:

(a) A ⊆ A

(b) A ⊆ B and B ⊆ C implies A ⊆ C

(c) A = B if and only if A ⊆ B and B ⊆ A

(d) ∅ ⊆ A ⊆ S

Proof: These basic properties follow directly from the preceding definitions;

their proof is left as an exercise to the reader. �
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Commonly used sets of numbers:

• Basic sets of numbers:

- Positive integers, or natural numbers: N = {1, 2, 3, ...}
- Integers: Z = {0,±1,±2, ...}
- Rational numbers: Q = {ab : a, b ∈ Z and b 6= 0}
- Real numbers: R

- Complex numbers: C = {a+ jb : a, b ∈ R}, where j =
√
−1

Note that N ⊂ Z ⊂ Q ⊂ R ⊂ C.

• Let a and b be two arbitrary real numbers. The following subsets of R

are called intervals from a to b:

- Open interval: (a, b) = {x ∈ R : a < x < b}
- Closed interval: [a, b] = {x ∈ R : a ≤ x ≤ b}
- Left semi-open interval: (a, b] = {x ∈ R : a < x ≤ b}
- Right semi-open interval: [a, b) = {x ∈ R : a ≤ x < b}

Note that these intervals are empty, i.e. identical to the empty set ∅,
when a > b.
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Finite versus infinite sets:

• A set is called finite if it is empty or contains a finite number of elements;

otherwise it is called infinite.

• A set is called countable if it is finite (countably finite) or if it is infinite

but can be put into a one-to-one correspondence with the set of positive

integers N (countably infinite). In the latter case, the elements of the

set can be indexed sequentially.

• A set that is not countable is said to be uncountable or uncountably

infinite.

• Examples:

- The set S = {1, 2, 3, 4, 5, 6} is countably finite.

- Examples of countably infinite sets include N, Z and Q.

- Examples of uncountably infinite sets include R and the open inter-

vals (a, b) for any a < b in R.
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Product sets:

• Let A and B be two arbitrary sets, not necessarily associated to the

same sample space. The product set of A and B, denoted A×B, is the

set of all ordered pairs (a, b) such that a ∈ A and b ∈ B. That is,

A×B = {(a, b) : a ∈ A and b ∈ B} (2.3)

1

• The product set A× A is also denoted in a more compact form as A2.

• The generalization of this concept to products of more than two sets is

immediate.

• As an example, the notation Rn, for n a positive integer, denotes the set

of all n-tuples (a1, a2, ..., an) where ai ∈ R for i = 1, ..., n.

Example 2.1:

◮ (a) Consider a single toss of a coin. The set of all possible observable results, or

outcomes, can be described as

S1 = {H,T}

where H denotes heads and T denotes tails.

(b) Consider two consecutive tosses of a coin. The set of all possible outcomes is

S2 = {HH,HT, TH, TT}

where, for example, the ordered sequence HT corresponds to H on the first toss

and T on the second toss. Observe that

S2 = {H,T} × {H,T} = S2
1

The event that at least one head is observed can be represented by the subset

A = {HH,HT, TH} ⊂ S2

◭

1test
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2.1.2 Set operations

Definitions: Let A and B be arbitrary subsets of a sample space S. We define

the following operations:

• The union of the sets A and B, denoted A∪B, is the set of all elements

that belong to at least one of the sets A or B:

A ∪B = {x ∈ S : x ∈ A or x ∈ B} (2.4)

• The intersection of the sets A and B, denoted A ∩ B, is the set of all

elements that belong to both A and B:

A ∩B = AB = {x ∈ S : x ∈ A and x ∈ B} (2.5)

• The complement of the set A, denoted Ac, is the set of all elements of S

that do not belong to A:

Ac = {x ∈ S : x 6∈ A} (2.6)

• The difference of the sets A and B, denoted A − B, is the set of all

elements of A that do not belong to B:

A−B = {x ∈ S : x ∈ A and x 6∈ B} (2.7)
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Remarks:

• In the above definition of the union, the “or” is a logical one, meaning

that x may be in A or B or both.

• In the probability literature, the symbol ∩ for the intersection is some-

times omitted, so that the notations A ∩B and AB are equivalent.

• If A ∩B = ∅, we say that A and B are mutually exclusive (or disjoint).

• Finally, note that Ac = S − A and A−B = A ∩Bc.
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Theorem 2.2: Let A, B and C be arbitrary subsets of a sample space S. The

following identities hold:

(a) Basic identities:

A ∪ A = A and A ∩ A = A (2.8)

A ∪ S = S and A ∩ S = A (2.9)

A ∪ ∅ = A and A ∩ ∅ = ∅ (2.10)

(b) Commutative laws:

A ∪B = B ∪ A and A ∩B = B ∩ A (2.11)

(c) Associative laws:

(A∪B)∪C = A∪ (B∪C) and (A∩B)∩C = A∩ (B∩C) (2.12)

(d) Distributive laws:

A∩ (B∪C) = (A∩B)∪ (A∩C) and A∪ (B∩C) = (A∪B)∩ (A∪C)

(2.13)

(e) Complementarity laws:

A ∪ Ac = S and A ∩ Ac = ∅ (2.14)

(Ac)c = A, Sc = ∅ and ∅c = S (2.15)

(f) DeMorgan’s laws:

(A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc (2.16)
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Proof: The proof of such properties is tedious but otherwise straightforward.

For any of the above equalities, we have to show set inclusion in both direc-

tion, that is: any arbitrary element of the set on the left-hand side is also an

element of the set on the right-hand side, and vice versa. This requires the

use and manipulation of logical assertions and operators. Familiarity with

the latter concepts is assumed.

As an example, consider the DeMorgan’s identity (A ∩ B)c = Ac ∪ Bc. We

have

x ∈ (A ∩B)c ⇐⇒ x 6∈ A ∩B
⇐⇒ x 6∈ A or x 6∈ B

⇐⇒ x ∈ Ac or x ∈ Bc

⇐⇒ x ∈ Ac ∪Bc

The other identities may be proved in a similar way; this is left as an exercise

for the reader. �
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Example 2.2:

◮ A die is rolled once. The set of possible outcomes is

S = {1, 2, 3, 4, 5, 6}

Define the subsets

A = {x ∈ S : x ≤ 3} = {1, 2, 3}
B = {x ∈ S : x even } = {2, 4, 6}

We have:

A ∩B = {2}
A ∪B = {1, 2, 3, 4, 6}

Ac = {4, 5, 6}
Bc = {1, 3, 5}

Let us verify DeMorgan’s Laws, i.e. Theorem 2.2 (f). From the above, we have

(A ∪B)c = {5}
Ac ∩Bc = {5}

which shows that the first identity in (2.16) is satisfied. In the same way,

(A ∩B)c = {1, 3, 4, 5, 6}
Ac ∪Bc = {1, 3, 4, 5, 6}

which shows the validity of the second identity in (2.16). ◭
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Venn diagrams:

• Venn diagrams provide a useful mechanism for visualizing various set-

theoretic operations.

• Basic idea:

- represent sets as planar areas delimited by closed contours;

- these contours are included in a larger rectangular area representing

the sample space S itself;

- an operation between various sets is shown as a shaded area.

• This is illustrated in Figure 2.1 for the following operations: A ∪ B,

A ∩B, Ac and A−B.

BAa)( BAb)(

c
Ac)( BAd −)(

S S

S S

A B A B

A B A B

Figure 2.1: Use of Venn diagrams to illustrate set operations.
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• Venn diagrams are often used as an intuitive device for gaining insight

into complex set relations and operations, although their use in the for-

mal proof of set properties is not quite appropriate.

• As an example, the following theorem may be easily justified on the basis

of Venn diagrams.

Theorem 2.3: Let A and B be arbitrary subsets of a sample space S. Anyone

of the following conditions is equivalent to the inclusion A ⊆ B:

(a) A ∩B = A

(b) A ∪B = B

(c) A ∩Bc = ∅
(d) Ac ∪B = S

(e) Bc ⊆ Ac

Justification based on Venn diagrams: A Venn diagram’s interpretation of

Theorem 2.3 (a) and (b) is illustrated in Figure 2.2.

ABAa =)( BBAb =)(

S S

A
B B

A

Figure 2.2: Interpretation of Theorem 2.3 based on Venn diagrams.
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Some generalizations:

• Consider a sequence of indexed subsets of S, say Ai where the index

i ∈ I, with I being a subset (finite or infinite) of the natural numbers N.

• The union and intersection of the sets Ai, i ∈ I, are defined as

⋃

i∈I
Ai = {x ∈ S : x ∈ Ai for some i ∈ I} (2.17)

⋂

i∈I
Ai = {x ∈ S : x ∈ Ai for all i ∈ I} (2.18)

When I = N, these may be denoted as
⋃∞
i=1 and

⋂∞
i=1, respectively.

• De Morgan’s laws admit immediate generalization to this case:

(
⋃

i∈I
Ai)

c =
⋂

i∈I
Ac
i and (

⋂

i∈I
Ai)

c =
⋃

i∈I
Ac
i (2.19)

• We say that the sequence Ai, i ∈ N, is increasing if A1 ⊆ A2 ⊆ A3 ⊆ ...

In this case, we define

lim
i→∞

Ai =
∞⋃

i=1

Ai (2.20)

• We say that the sequence Ai, i ∈ N, is decreasing if A1 ⊇ A2 ⊇ A3 ⊇ ...

In this case, we define

lim
i→∞

Ai =
∞⋂

i=1

Ai (2.21)
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Example 2.3:

◮ Consider the real plane, S = R2. Define Ai as the subsets of all points in on

or inside a circle of radius i centered at the origin, where i is a positive integer.

That is

Ai = {(x, y) ∈ R2 : x2 + y2 ≤ i2}, i ∈ N

Observe that

A1 ⊆ A2 ⊆ A3 ⊆ . . .

so that the sequence Ai is increasing. This is illustrated in Figure 2.3.

x

y

1
A 2
A 3
A

1 2 3

Figure 2.3: An increasing sequence of subsets.

Also note that (try to prove it)

∞⋃

i=1

Ai = {(x, y) ∈ R2 : (x, y) ∈ Ai for some i} = R2

Therefore,

lim
i→∞

Ai = R2

◭
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2.1.3 Sets of sets

The elements of a set may themselves be sets. Such sets of sets are often

called classes or families of sets. Sets having for elements subsets of a sample

space S play a central role in probability. Below, we develop these concepts.

Power set:

• The set of all the subsets of a set S is called the power set of S and is

denoted by PS, or simply P .

• Since ∅ ⊆ S and S ⊆ S, we have by definition of PS that ∅ ∈ PS and

S ∈ PS.

• For example, let S = {0, 1}. Then PS = {∅, {0}, {1}, S}

Remarks:

• When the sample space S is uncountably infinite (e.g. S = R), the

power set PS will typically contain undesirable subsets that pose serious

mathematical difficulties.

• In such situations, it is usually desirable to work with a much smaller

subset of PS, that do not include the undesirable subsets.

• This leads to the notion of set algebras.
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Set algebra: Let F be a set of subsets of S, that is F ⊆ PS. We say that F
is an algebra iff

(a) S ∈ F
(b) A ∈ F ⇒ Ac ∈ F
(c) A,B ∈ F ⇒ A ∪B ∈ F

Remarks:

• From (a) and (b), it follows that ∅ ∈ F since ∅ = Sc.

• According to the above definition, the algebra F is closed under the

operations of complementation and union.

• Using DeMorgan’s laws, you should be able to show that F is also closed

under the operation of intersection, that is: A,B ∈ F ⇒ A ∩B ∈ F .

Example 2.4:

◮ Let S = {0, 1}. The corresponding power set is

PS = {∅, {0}, {1}, S}.

It is easy to check that PS is an algebra...

(a) S ∈ PS

(b) For any A ∈ PS, we have Ac ∈ P. For example:

∅c = S ∈ PS, {0}c = {1} ∈ PS, etc.

(c) For any A,B ∈ PS, we have A ∪B ∈ PS. For example:

∅ ∪ ∅ = ∅ ∈ PS, ∅ ∪ {0} = {0} ∈ PS, etc.

Note that there are 10 such identities to check.

◭
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Sigma algebra:

• In probability theory, a more specific type of algebra, called sigma-

algebra, or simply σ-algebra, is employed.

• The latter is defined as above, but condition (c) is replaced by:

(c’) If the sets A1, A2, A3, ... belong to F , so does their union ∪∞
i=1Ai.

• The use of an infinite sequence in (c’) ensures that F is closed under

any countable combination of complement, union and intersection oper-

ations.

• Note that any finite algebra (i.e. with F containing a finite number of

elements) is also a σ-algebra.
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2.2 Combinatorial analysis 31

2.2 Combinatorial analysis

What is combinatorial analysis?

• Part of mathematics dealing with the study and development of system-

atic methods for counting.

• Find applications in many areas of sciences and engineering: probability

and statistics, information theory, data compression, genetics, etc.

• The calculation of probabilities often amounts to counting the number

of elements in various sets. Combinatorial techniques will be of great

help in the solution of these problems.
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2.2.1 Basic counting techniques

r-tuples:

• Let r be a positive integer.

• A r-tuple is an ordered list (or vector) of elements, of the form (x1, x2, ..., xr),

or simply x1x2...xr (when there is no ambiguity).

• Two r-tuples are equal (=) if and only if each of the corresponding

elements are identical.

Theorem 2.4 (Generalized counting principle): Let A be a set of r-tuples,

x1x2...xr, such that there are, firstly, n1 different ways in which to chose x1,

secondly, n2 different ways in which to chose x2, ... and finally, nr different

ways in which to chose xr. Then A contains

N(A) = n1n2...nr (2.22)

different r-tuples.

Remarks:

• Theorem 2.4, which is to some extent obvious, can be proven by math-

ematical induction (left as an exercise).

• The theorem specifies only the number of possible choices that are avail-

able at each step: the specific choices in the rth step may depend on

previous choices, but not their number nr.
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Example 2.5:

◮ In Quebec, license plate numbers are made up of 3 letters followed by 3 digits,

that is l1l2l3d1d2d3 where li is any one of 26 possible letters from a to z, and di is

any one of the possible digits from 0 to 9. Thus there are, in principle,

26 × 26 × 26 × 10 × 10 × 10 = 263 × 103 = 17, 576, 000 (2.23)

different license plate numbers. ◭

Corollary: Suppose the sets A1, A2, ..., Ar contain n1, n2, ..., nr elements, re-

spectively. Then the product set

A1 × A2 × ...× Ar = {(a1, a2, ..., ar) : ai ∈ Ai} (2.24)

contains n1n2...nr elements.

Remarks:

• This result is an immediate consequence of Theorem 1.

• In particular, if A contains n elements, then Ar contains nr elements.
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Theorem 2.5: A set S containing n elements has 2n different subsets, or

equivalently, its power set PS contains 2n elements.

Proof: Let S = {s1, s2, ..., sn}. The essence of the proof is to realize that

every subset A of S may be represented uniquely by a binary sequence of

length N , say b1b2...bn, where for i = 1, ..., n, we have bi = 1 if si ∈ A and

bi = 0 if si 6∈ A. The number of subset of S is therefore equal to the number

of binary sequences b1b2...bn ∈ {0, 1}n, which is equal to 2n. �

Example 2.6:

◮ Consider a set S with two elements, say S = {a, b}. The basic idea used in the

above proof is illustrated in the table below:

Subset Binary representation

∅ 00

{a} 10

{b} 01

S = {a, b} 11

In this case, we have 22 = 4 subsets in PS. ◭
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Tree diagrams:

• Useful when counting principle does not apply directly.

• For example, when the number of ways of selecting a second element

depends on the choice made for the first element, and so on.

• Tree diagram provides systematic identification of all possibilities.

Example 2.7:

◮ In a certain binary coding scheme, individual pieces of information (e.g. letters,

digits, etc.) are represented by specific sequences of 0s and 1s, called codewords.

List all possible codewords that terminate upon the occurrence of symbol 0 or a

maximum of 3 bits?

◭
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2.2.2 Permutations

Definition: An ordered arrangement of r elements taken without replacement

from a set A containing n elements (0 < r ≤ n) is called an r-element

permutation of A. The number of such permutations is denoted P (n, r).

Example 2.8:

◮ Consider the set A = {a, b, c}. All the possible 2-element permutations of A are:

ab, ac, ba, bc, ca, cb

The number of these permutations is P (3, 2) = 6. ◭

Remarks:

• Repetitions are not allowed in a permutation. In the above example,

once a has been selected as the first element, the remaining choices for

the second element are b or c.

• A permutation is an ordered arrangement of r elements, i.e. an r-tuple.

Thus the order does matter: ab 6= ba
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Theorem 2.6: The number of r-element permutations of a set A containing

n elements is given by the product

P (n, r) = n (n− 1)...(n− r + 1) (2.25)

Proof: Observe the following:

- there are n ways in which to chose the 1st element, leaving us with n−1

remaining elements;

- there are n− 1 ways in which to chose the 2nd element leaving us with

n− 2 remaining elements;...

- and finally, there are n− r + 1 ways in which to chose the rth element.

Therefore, according to Theorem 2.4, there are n(n− 1)...(n− r+ 1) ways of

forming all the possible permutations. �
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Factorial notation:

• For any positive integer n, we define

n! = n(n− 1)(n− 2)...1 (2.26)

It is also convenient to define 0! = 1.

• Alternatively, factorials may be defined (and computed) recursively as

n! = n (n− 1)!, with initial condition 0! = 1.

• Factorials grow surprisingly fast: 10! = 3628800, 20! ≈ 2.4329 × 1018,

etc.

• For large values of n, may use Stirling’s approximation:

n! ≈
√

2πnn+1/2e−n (2.27)

• Useful to express P (n, r) in terms of factorials:

P (n, r) =
n!

(n− r)!
(2.28)
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Example 2.9:

◮ How many different words can we form: (a) with the 4 letters P H I L; (b) with

the 6 letters P H I L I P?

(a) Since the 4 letters P H I L are different, the number of different words is

equal to the number of 4-element permutations of these letters, that is

P (4, 4) = 4! = 24

(b) First assume that the 2 P’s and 2 I’s are distinct, as in P H I L I’ P’. The

number of possible permutations of these 6 “different” letters is

P (6, 6) = 6! = 720

Clearly, some of these permutations result in the same word. For instance:

P H I L I’ P’ = P’ H I L I’ P

Specifically, we note that there are

2! permutations of the letters P P’

2! permutations of the letters I I’

Taking this into account, the number of different words that can be formed

with the letters P H I L I P is

6!

2!2!
=

720

4
= 180

◭
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2.2.3 Combinations

Definition: An unordered arrangement of r objects taken without replace-

ment from a set A containing n elements (0 < r ≤ n) is called an r-element

combination of A. The number of such combinations is denoted C(n, r).

Example 2.10:

◮ Consider the set A = {a, b, c}. All the possible combinations of the elements of

A taken 2 at a time are:

ab, ac, bc (2.29)

Thus the number of such combinations is C(3, 2) = 3. ◭

Remarks:

• As in the case of permutations, repetitions are not allowed.

• Contrary to permutations, order does not matter: ab and ba are counted

as one combination.

• Except for the absence of curly brackets (and commas), an r-element

combination of A is the same as an r-element subset of A.
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Theorem 2.8: The number of r-element combinations of a set A containing

n elements, is given by

C(n, r) =
n!

(n− r)! r!
(2.30)

Proof: Simply observe that every r-element permutation of A can be obtained

by first selecting an r-element combination and then permuting the r selected

elements. Therefore, according to the basic counting principle:

C(n, r) × r! = P (n, r) =
n!

(n− r)!
(2.31)

from which the desired result follows. �

Corollary: A set S containing n elements has C(n, r) = n!/(n− r)! r! different

subsets of size r.

Proof: Simply recall that an r-element combination and an r-element subset

of a set S are conceptually equivalent.
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Definition: For any integers r and n, with 0 ≤ r ≤ n, we define:
(
n

r

)

=
n!

r!(n− r)!
= C(n, r) (2.32)

The expression
(
n
r

)
(read “n choose r”) is also called binomial coefficient.

Theorem 2.9: The binomial coefficients satisfy the following relations:
(
n

0

)

=

(
n

n

)

= 1 (2.33)

(
n

r

)

=

(
n

n− r

)

(2.34)

(
n+ 1

r

)

=

(
n

r

)

+

(
n

r − 1

)

(2.35)

Proof: Left as exercise.

Note: Can you give an intuitive interpretation of (2.35) and (2.36)?
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Example 2.11:

◮ In a 6/49 lottery, players pick 6 different integers between 1 and 49, without

repetition, the order of the selection being irrelevant. The lottery commission

then selects 6 winning numbers in the same manner. A player wins the first prize

if his/her selection matches the 6 winning numbers. The player wins the second

prize if exactly 5 of his/her chosen numbers match the winning selection. How

many different winning combinations are there?

- 1st prize: Here, the player selection must be identical to that of the lottery

commission. There is only one possible way of doing that.

- 2nd prize: Here, there are
(
6

5

)
= 6 ways of selecting 5 numbers out of the

6 winning numbers. There are also
(
43

1

)
= 43 ways of choosing one number

out of the 49-6=43 non-winning numbers. Thus, the number of different

combinations leading to a 2nd prize is

6 × 43 = 257

◭
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2.2.4 Sampling problems

Motivation:

• Many counting problems can be interpreted as sampling problems, in

which objects are selected from a population.

• Below, we define four types of sampling problems and for each one, we

provide a general counting formula.

• In all these cases, a selection of r objects from a population is made. The

latter is represented by a set A initially containing n distinct objects.

Sampling with replacement and with ordering:

• After selecting an object from A and noting its identity in an ordered

list, the object is put back into A.

• This corresponds to the basic counting situation (Theorem 2.5). Thus,

the number of distinct ordered lists is

N1(n, r) = nr (2.36)
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Sampling without replacement and with ordering:

• After selecting an object from A and noting its identity in an ordered

list, the object is discarded A.

• The number of distinct lists is equal to the number of r-element permu-

tations from set A. Therefore (Theorem 2.6), we have

N2(n, r) = P (n, r) =
n!

(n− r)!
(2.37)

Sampling without replacement and without ordering:

• After selecting an object from A and noting its identity in a non-ordered

list, the object is discarded.

• The number of distinct lists is equal to the number of r-element combi-

nations from set A. Therefore (Theorem 2.8), we have

N3(n, r) =

(
n

r

)

=
n!

r!(n− r)!
(2.38)
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Sampling with replacement and without ordering:

• After selecting an object from A and noting its identity in a non-ordered

list, the object is put back in A.

• In order to count the number of possibilities, we need to specify the way

in which the observations are recorded.

• The standard approach consists in listing for each object how many times

it is selected.

• For example, suppose n = 6 and r = 5. A possible observation is then

(3, 0, 0, 1, 0, 1), which can also be represented as

xxx| | |x| |x

• The number of distinct possible observations (or lists) is equal to the

number of distinguishable permutations of n+ r − 1 objects of two dif-

ferent types, of which r are alike (the x’s) and n− 1 are alike (the |’s).

• Therefore (Theorem 2.7), we have

N4(n, r) =
(n+ r − 1)!

r!(n− 1)!
(2.39)
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2.2.5 Miscellaneous results

Theorem 2.10 (binomial expansion): For any integer n ≥ 0,

(x+ y)n =
n∑

i=0

(
n

i

)

xn−iyi (2.40)

Proof: By induction on n (left as an exercise).

Example 2.12:

◮ Suppose set S contains n elements. We can use (2.41) to show that PS, the Power

set of S, contains 2n elements (see also Theorem 2.5):

- Power set = set of all subsets of S

- A subset of S may contains r elements, with 0 ≤ r ≤ n

- Number of r-element subsets: C(n, r) =
(

n
r

)

- Total number of subsets:
(
n

0

)

+

(
n

1

)

+ ...+

(
n

n− 1

)

+

(
n

n

)

= (1 + 1)n = 2n (2.41)

◭

Theorem 2.11 (multinomial expansion): For any integer n ≥ 0,

(x1 + x2 + ...+ xk)
n =

∑

n1+n2+...+nk=n

n!

n1!n2! ... nk!
xn1

1 xn2

2 ... xnk

k (2.42)
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Problems

1. Suppose that A ⊆ B, show that A ∩ (B − A) = ∅.

2. It is a tradition for business men in North America to shake hands prior

to a meeting. In a meeting involving n so-called business men, how many

handshakes will be exchanged?

3. How many different decimal numbers of 4 digits can we form that contain

at least one 7?

4. 10 persons are waiting at an airport counter, of whom 5 are from Canada

and five are from France. How many different line-ups can be formed so

that no two persons from the same country are next to each other?

5. Use mathematical induction to proof Theorem 2.10.
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Chapter 3

Axiomatic approach to probability

Chapter Overview:

• Axioms of probability and terminolgy

• Basic probability theorems

• Special cases of probability space:

- Discrete (finite and countably infinite)

- Continuous (uncountably infinite)

49
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3.1 Axioms of probability

Random experiment:

• An experiment, either natural or man-made, in which one among several

identified results are possible, is called a random experiment.

• The possible results of the experiments are called outcomes.

• A particular realization of the experiment, leading to a particular out-

come, is called a trial.

Probability space:

• In the axiomatic approach to probability, a random experiment is mod-

eled as a probability space, the latter being a triplet (S,F , P ), where

- S is the sample space,

- F is the set of events (events algebra),

- P (.) is the probability function.

• These concepts are described individually below.
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Sample space:

• The sample space S is the set of all possible results, or outcomes, of the

random experiment.

• In practical applications, S is defined by the very nature of the problem

under consideration. S may be finite, countably infinite or uncountably

infinite.

• The elements of S, i.e. the experimental outcomes, will usually be de-

noted by lower case letters (e.g.: s, a, x, etc...)

Example 3.1:

◮ Consider a random experiment that consists in flipping a coin twice. A suitable

sample space may be defined as

S = {HH,HT, TH, TT}

where, for example, outcome HT corresponds to heads on the first toss and tails

on the second. Here, S is finite with only 4 outcomes. ◭
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Events:

• In probability theory, an event A is defined as a subset of S, i.e. A ⊆ S.

• Referring to a particular trial of the random experiment, we say that A

occurs if the experimental outcome s ∈ A.

• Special events S and ∅:
- Since for any outcome s, we have s ∈ S by definition, S always

occurs and is thus called the certain event.

- Since for any outcome s, we have s 6∈ ∅, ∅ never occurs and is thus

called the impossible event.

Example 3.1 (continued):

◮ Consider the event A = {getting heads on the first flip}. This can equivalently

be represented by the following subset of S:

A = {HH,HT} ⊂ S

Let s denote the outcome of a particular trial:

if s = HH or HT ⇒ A occurs

if s = TH or TT ⇒ A does not occur

◭
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Events algebra:

• Let F denote the set of all events under consideration in a given random

experiment. Note that F is a set of subsets of S

• Clearly:

- F must be large enough to contain all interesting events,

- but not so large as to contain impractical events that lead to math-

ematical difficulties. (This may be the case when S is uncountably

infinite, e.g. S = Rn.)

• In the axiomatic approach to probability, it is required that F be a

σ-algebra:

(a) S ∈ F
(b) A ∈ F ⇒ Ac ∈ F
(c) A1, A2, ... ∈ F ⇒ ∪iAi ∈ F

• Whenever S is finite, the simplest and most appropriate choice for F is

generally the power set PS.

• The proper choice for F when S in infinite will be discussed later.
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Example 3.1 (continued):

◮ Consider flipping a coin twice and let S = {HH,HT, TH, TT} be the corre-

sponding sample space. An appropriate choice for F here is PS, i.e. the set of all

subsets of S:

PS = {∅, {HH}, {HT}, {TH}, {TT}, {HH,HT}, {HH,TH},
{HH,TT}, {HT, TH}, {HT, TT}, {TH, TT}, {HH,HT, TH},
{HH,HT, TT}, {HH,TH, TT}, {HT, TH, TT}, S}

Note that F = PS contains 16 = 24 different subsets, i.e. events, that may or

may not occur during a particular realization of the random experiment. For

example, the event {HH,HT, TH} ∈ F corresponds to obtaining at least one

heads when you flip the coin twice.

If you think about it, each event corresponds to a specific statement about the

experimental outcome and here, there are only 16 possible different statements

of this type that can be made. ◭
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The probability function:

• P is a function that maps events A in F into real numbers in R, that is:

P : A ∈ F → P (A) ∈ R (3.1)

The number P (A) is called the probability of the event A.

• The function P (.) must satisfy the following axioms:

Axiom 1: The function P is non-negative:

P (A) ≥ 0 (3.2)

Axiom 2: The function P is normalized so that

P (S) = 1 (3.3)

Axiom 3: Let A1, A2, A3, ... be a sequence of mutually exclusive events,

that is, Ai ∩ Aj = ∅ for i 6= j. Then

P (
∞⋃

i=1

Ai) =
∞∑

i=1

P (Ai) (3.4)
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Remarks:

• From an operational viewpoint, the number P (A) may be interpreted as

a measure of the likelihood of event A in a particular realization of the

random experement.

• If P (A) = P (B), we say that events A and B are equally likely (this

does NOT imply that A = B).

• As a special case of Axiom 3, it follows that for any events A and B,

A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B) (3.5)

• In the special case of a finite sample space S, it can be shown that (3.5)

is in fact equivalent to Axiom 3. Thus, when S is finite, we may replace

Axiom 3 (infinite additivity) by the simpler condition (3.5).
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Example 3.1 (continued):

◮ Let the function P be defined as follows, for any A ∈ F :

P (A) ,
N(A)

4

where N(A) denotes the number of elements in subset A. For example, consider

event A = {at least on tails}; we have

A = {TH,HT, TT} ⇒ N(A) = 3

⇒ P (A) =
3

4

It can be verified easily that function P satisfies all the axioms of probability:

- Axiom 1: For any event A, N(A) ≥ 0 and therefore, P (A) = N(A)/4 ≥ 0.

- Axiom 2: Since N(S) = 4, we immediately obtain P (S) = N(S)/4 = 1.

- Axiom 3: Observe that if A ∩ B = ∅, then N(A ∪ B) = N(A) +N(B) and

therefore

P (A ∪B) =
N(A ∪B)

4

=
N(A)

4
+
N(A)

4
= P (A) + P (B)

◭
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3.2 Basic theorems

Introduction: Several basic properties follow from the axiomatic definition

of the probability function P (A). These are listed below as theorems along

with their proof.

Theorem 3.1: For any event A ∈ F :

P (Ac) = 1 − P (A) (3.6)

Proof: Observe that A ∩ Ac = ∅ and A ∪ Ac = S. Thus, using Axiom 3,

we have: P (A) + P (Ac) = P (A ∪ Ac) = P (S) = 1, or equivalently, P (Ac) =

1 − P (A). �

Corollary: For any event A ∈ F :

0 ≤ P (A) ≤ 1 (3.7)

Proof: Left as exercise. �

Theorem 3.2:

P (∅) = 0. (3.8)

Proof: Observe that ∅ = Sc. Thus, invoking Theorem 3.1 and Axiom 2, we

have: P (∅) = P (Sc) = 1 − P (S) = 0 . �
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Theorem 3.3: If A ⊆ B, then

(a) P (B − A) = P (B) − P (A) (3.9)

(b) P (A) ≤ P (B) (3.10)

Proof: Since A ⊆ B, set B may be expressed as the union B = A ∪ (B −A)

where A and B − A are mutually exclusive, that is A ∩ (B − A) = ∅. The

Venn diagram below illustrates this situation:

S

B

A

B-A

Figure 3.1: Venn diagram for Theorem 3.3.

Using axiom 3, we have

P (B) = P (A ∪ (B − A)) = P (A) + P (B − A) (3.11)

which proves part (a). To prove part (b), simply note (see Axiom 1) that

P (B − A) ≥ 0. �
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Theorem 3.4: For arbitrary events A and B, we have

P (A ∪B) = P (A) + P (B) − P (A ∩B) (3.12)

Proof: Observe that for any events A and B, we can always write

A ∪B = A ∪ (B − (A ∩B)) (3.13)

where A and B−(A∩B) are mutually exclusive. This is illustrated by means

of a Venn diagram below:

S

A B

AB B-AB

Figure 3.2: Venn diagram for Theorem 3.4. (Note: AB ≡ A ∩B.)

Invoking Axiom 3, we first obtain

P (A ∪B) = P (A) + P (B − (A ∩B))

Since A ∩B ⊆ B, Theorem 3.3 yields

P (B − (A ∩B)) = P (B) − P (A ∩B)

Eq. (3.12) follows by combining the above two identities. �
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Remarks:

• Theorem 3.4 may be generalized to a union of more than two events.

• In the case of three events, say A, B and C, the following relation can

be derived

P (A∪B∪C) = P (A)+P (B)+P (C)−P (AB)−P (AC)−P (BC)+P (ABC).

(3.14)

• The above formula can be proved by repeated application of Theorem

3.4. This is left as an exercise.

• See the textbook for a more general formula applicable to a union of n

events, where n is an arbitrary positive integer.

Theorem 3.5: For any events A and B:

P (A) = P (A ∩B) + P (A ∩Bc). (3.15)

Proof: The theorem follows from Axiom 3 by noting that A ∩B and A ∩Bc

are mutually exclusive and that their union is equal to A (see Fig. 3.3). �

AB

S

A B

ABc

Figure 3.3: Venn diagram for Theorem 3.5.
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Example 3.2:

◮ In a certain city, three daily newspapers are available, labelled here as A, B and C

for simplicity. The probability that a randomly selected person reads newspaper

A is P (A) = .25. Similarly, for newspapers B and C, we have P (B) = .20

and P (C) = .13. The probability that a person reads both A and B is P (AB) =

P (A∩B) = .1. In the same way, P (AC) = .08, P (BC) = .05 and P (ABC) = .04.

(a) What is the probability that a randomly selected person does not read any

of these three newspapers?

(b) What is the probability that this person reads only B, i.e. reads B but not

A nor C?

◭
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Theorem 3.6: For any increasing or decreasing sequence of eventsA1, A2, A3, ...

we have

lim
i→∞

P (Ai) = P ( lim
i→∞

Ai) (3.16)

Remarks:

• Recall that a sequence Ai, i ∈ N, is increasing if A1 ⊆ A2 ⊆ A3 ⊆ ..., in

which case we define limi→∞Ai =
⋃∞
i=1Ai.

• Similarly, a sequence Ai, i ∈ N, is decreasing if A1 ⊇ A2 ⊇ A3 ⊇ ..., in

which case we define limi→∞Ai =
⋂∞
i=1Ai.

• Theorem 3.6 is essentially a statement about the continuity of the prob-

ability function P .

• Specifically, it says that under proper conditions on the sequence Ai

(i.e. increasing or decreasing), the limit operation in (3.16) can be passed

inside the argument of P (.).
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Proof (optional reading): First consider the case of an increasing sequence, i.e. A1 ⊆ A2 ⊆
A3 ⊆ ... Define a new sequence of events as follows: B1 = A1 and Bi = Ai − Ai−1 for any

integer i ≥ 2. Note that the events Bi so defined are mutually exclusive, i.e. Bi

⋂
Bj = ∅ if

i 6= j. Furthermore, the following relations hold

i⋃

j=1

Bj = Ai

∞⋃

j=1

Bj =
∞⋃

j=1

Aj

Making use of above results together with Axiom 3, we first obtain:

P ( lim
i→∞

Ai) = P (
∞⋃

j=1

Aj) = P (
∞⋃

j=1

Bj) =
∞∑

j=1

P (Bj) (3.17)

Finally, the infinite summation can be expressed in terms of limits as follows:

∞∑

j=1

P (Bj) = lim
i→∞

i∑

j=1

P (Bj) = lim
i→∞

P (
i⋃

j=1

Bj) = lim
i→∞

P (Ai) (3.18)

A proof of (3.16) for decreasing sequences can be derived in a somewhat similar way. �
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3.3 Discrete probability space

Introduction:

• In many applications of probability (games of chance, simple engineering

problems, etc.), the sample space S is either finite or countably infinite.

The word discrete is used to describe anyone of these two situations.

• Specifically, we say that a probability space (S,F , P ) is discrete when-

ever the sample space S is finite or countably infinite.

• In this section, we discuss discrete spaces along with related special cases

of interest.
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3.3.1 Finite probability space

Sample space:

• The sample space S is a finite set comprised of N distinct elements:

S = {s1, s2, ..., sN} (3.19)

where N is a positive integer and si denotes the ith possible outcome.

Events algebra:

• In the finite case, it is most convenient to take for events algebra the

power set of the sample space S:

F = PS

= set of all subsets of S

= {∅, {s1}, {s2}, ..., {sN}, {s1, s2}, {s1, s3}, ..., S} (3.20)

• That is, the events algebra consists of all possible subsets of S. Indeed,

in the finite case, it is usually not advantageous nor necessary to exclude

certain subsets of S from F .

• Recall that PS, the power set of S, contains 2N distinct elements (i.e. sub-

sets). Thus, there are 2N possible events or different statements that can

be made about the experimental outcome.
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Probability function:

• In the finite case, a standard way to define the probability function P (.)

is via the introduction of a probability mass pi.

• To each si ∈ S, i = 1, ..., N , we associate a real number pi, such that:

(a) pi ≥ 0, i = 1, ..., N (3.21)

(b)
N∑

i=1

pi = 1 (3.22)

• The probability of any event A ∈ F is then defined as

P (A) =
∑

si∈A
pi (3.23)

For example, if A = {s1, s4, s6}, then P (A) = p1 + p4 + p6.

• In particular, for the elementary events {si}, we have

P ({si}) = pi, i = 1, ..., N (3.24)
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Axioms of probability: It may be verified that the probability function P (.)

so defined satisfies the probability Axioms:

• Axiom 1: From the condition pi ≥ 0 in (3.21), it follows that

P (A) =
∑

si∈A
pi ≥ 0

• Axiom 2: From condition (3.22), it follows that

P (S) =
N∑

i=1

pi = 1

• Axiom 3: Suppose A and B have no common element (i.e. A ∩ B = ∅),
then we have

P (A ∪B) =
∑

si∈A∪B
pi

=
∑

si∈A
pi +

∑

si∈B
pi = P (A) + P (B)

Example 3.3:

◮ ◭
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3.3.2 Equiprobable space

Definition:

• This is a special case of the finite probability space.

• We say that a probability space is equiprobable (also equilikely) if it is

finite and the probability mass pi are all equal.

The probability mass:

• Let N be the number of possible outcomes in the sample space S.

• Suppose that the numbers pi are all equal. Then, from condition (3.22),

i.e.
∑N

i=1 pi = 1, it follows that

P ({si}) = pi =
1

N
for all i = 1, ..., N (3.25)

Probability function:

• Consider an arbitrary event A ∈ F , containing N(A) distinct elements.

From (3.23) and (3.25), it follows that

P (A) =
N(A)

N
(3.26)
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Remarks:

• We say that the possible outcomes si ∈ S are equally likely.

• Equation (3.26) corresponds to the classical definition of probability, as

discussed in Chapter 1.

• In problem statements, the following standard terminology is used to

indicate an equiprobable space:

- random selection among N possibilities;

- a fair experiment

- equiprobable or equilikely outcomes

Example 3.4:

◮ What is the probability of at least one 6 when rolling four fair dice? ◭

Example 3.5: Standard birthday problem

◮ What is the probability that at least two sutdents in a class of size n have the

same birtday? ◭

c© 2003 Benôıt Champagne Compiled September 12, 2006



3.3 Discrete probability space 71

3.3.3 Countably infinite probability space

Sample space:

• The sample space S is a countably infinite set represented as

S = {s1, s2, s3, ...} (3.27)

where si, i ∈ N, denotes the ith possible outcome.

• Example of countably infinite sets include N, Z and Q.

Events algebra:

• As in the finite case, it is usually most convenient to take as events

algebra the power set of S:

F = PS = {A : A ⊆ S} (3.28)

• Observe that since S is infinite, so is F = PS and thus the number of

events under consideration is infinite.

• Some of these events are finite, such as the elementary events {si} for

i ∈ N, while other are infinite, such as S or, for example, A = {si :

i is even } = {s2, s4, s6, ...}.
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Probability function:

• Much the same way as in the finite case, the probability function P (.)

is defined via a probability mass pi.

• To every si ∈ S, where i now takes value in the set N, we associate a

real number pi such that:

(a) pi ≥ 0, for all i ∈ N (3.29)

(b)
∞∑

i=1

pi = 1 (3.30)

• The probability of any event A ∈ F is defined as

P (A) =
∑

si∈A
pi (3.31)

In particular, for any i ∈ N, we have P ({si}) = pi.

• It may be verified that the probability function P (.) so defined satisfies

all the probability Axioms.
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Remark:

• The concept of an equiprobable space does not make sense here: If pi

was constant, condition (3.30) could not be satisfied.

Example 3.6:

◮ Consider flipping a fair coin until heads is observed for the first time. What is

the probability that the number of required flips is even?

Solution: ◭
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3.4 Continuous probability space

Introduction:

• In many engineering applications of probability (e.g. design of a radio

receiver, speech recognition system, image analysis, etc.) the sample

space is uncountably infinite or, equivalently, continuous.

• We say that a probability space (S,F , P ) is continuous whenever the

sample space S is uncountably infinite. The proper, formal mathematical

treatment of this case is beyond the scope of this course.

• Here, we adopt an engineering approach, relying more on intuition than

mathematical formalism. You will have to accept certain results and

concepts without complete justification.

• Still, we try to explain some of the technical difficulties associated to

continuous spaces and we describe some of the mathematical apparatus

available to handle this situation.
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3.4.1 One-dimensional (1D) continuous space

Sample space:

• S is either the set of real numbers R, or an interval thereof:

S = R or S = (a, b) ⊆ R (3.32)

where a < b are real numbers.

• These are not the only possibilities but they cover most cases of interest.

• Note: the elements of S cannot be counted.

Example:

• Waiting time of a person at a bus station.

• Analog voltage measurement on ±5 volts scale: S = [−5,+5] ⊂ R

• The power dissipated in a resistor: S = [0,∞)
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Events algebra:

• In the continuous case, it is NOT convenient to take the power set of S

as events algebra, so: F 6= PS:

• PS includes some strange and complex subsets of R that are counter-

intuitive, of no interest in engineering applications and pose serious

mathematical difficulties.

• In practice, only those events that belong to the so-called Borel field of

S, denoted BS, are included in the events algebra, that is

F = BS ⊂ PS (3.33)

• While BS is smaller than PS, it contains all subsets of practical signif-

icanve in applications of probability. This includes intervals of the real

axis and various combinations thereof.

• See next page for additional explanations.
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Borel field (optional reading):

• For simplicity, assume S = R.

• Intervals from R may be combined via union, intersection and complementation to

generate more complex subsets of R.

• The Borel field of R, denoted BR may be defined as the smallest σ-algebra that contains

as elements all intervals of R.

• For example, the following subsets of R all belong to BR:

- The intervals (a, b), [a, b), etc., with a, b ∈ R.

- Any subset of R obtained from such intervals via a countable number of union,

intersection and/or complementation operations.

• Because the Borel field BR is made up of subsets of R, it is a subset of the power set

PR. However, BR does not contain every subset of R:

BR ⊂ PR (3.34)

• The Borel field BR essentially contains those subsets of R which are meaningful from

an application perspective. Other less interesting and problematic subsets are left out.

• Since BR is a σ-algebra, it can be used as an events algebra in a probability model.
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Probability function:

• A standard way to define the probability function P (.) is via a proba-

bility density ρ(x).

• To each x ∈ S ⊆ R, we associate a real number ρ(x), such that:

(a) ρ(x) ≥ 0, for all x ∈ S (3.35)

(b)

∫

S

ρ(x)dx = 1 (3.36)

• The probability of any event A ∈ F = BS is then defined as

P (A) =

∫

A

ρ(x)dx (3.37)

• It may be verified that the probability function P (.) so defined satisfies

the probability axioms A1, A2 and A3:

- Axiom 1: From (3.37) and (3.35), it follows that

P (A) =

∫

A

ρ(x) dx ≥ 0

- Axiom 2: From (3.37) and (3.36), we have

P (S) =

∫

S

ρ(x) dx = 1

- Axiom 3: Suppose A ∩B = ∅. Invoking basic properties of integration, we have

P (A ∪B) =

∫

A∪B

ρ(x) dx

=

∫

A

ρ(x)dx+

∫

B

ρ(x)dx = P (A) + P (B)
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Uniform probability space:

• We say that a continuous 1D probability space is uniform if the sample

space has finite length and the probability density ρ(x) is constant. This

is the simplest case of a 1D continuous probability space.

• The sample space S is typically a bounded interval, as in S = (a, b) or

S = [a, b] , where a < b are bounded real numbers (i.e. |a|, |b| < ∞). It

does not matter whether the interval S is open, closed, or semi-open.

• Assuming that the function ρ(x) is constant, it immediately follows from

condition (3.36) that

ρ(x) =
1

b− a
for all x ∈ (a, b) (3.38)

• The probability function is easily obtained by inserting (3.38) into (3.37).

Specifically, for any event A ∈ F , we find:

P (A) =
1

b− a

∫

A

dx =
length of A

b− a
(3.39)

• The following special cases are of interest:

- If A is an interval of the type A = (α, β) contained in S, i.e. a ≤
α ≤ β ≤ b, then

P (A) =
β − α

b− a
(3.40)

- For any x ∈ S, we have

P ({x}) = 0 (3.41)

Example 3.7:

◮ Random selection of a point from the interval [−1, 1]... ◭
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3.4.2 Continuous probability space in higher dimensions

In this section, we consider the generalization of the one-dimensional contin-

uous probability space introduced in Section 3.4.1 to n dimensions, where n

is a positive integer.

Sample space:

• The sample space is typically Rn or a subset thereof, i.e.: S ⊆ Rn

• Examples include the plane R2, the three-dimensional space R3 or spe-

cific regions thereof (e.g. a delimited surface in R2 or volume in R3).

Events algebra:

• The standard choice is F = BS, which contains all the subsets of prac-

tical interest in engineering applications.

• For example, if S = R2, the Borel field BS will contain any geometrical

region of practical interest within the real plane, such as:

- points, lines, curves, and geometrically delimited areas.

- other regions obtained from union, intersection and complentation

of above regions.
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Probability function:

• P (.) may be defined via a probability density function ρ(x), where x ∈
S ⊆ Rn is now a vector (when n ≥ 2).

• To each element x in S, we associate a real number ρ(x), such that:

(a) ρ(x) ≥ 0, for all x ∈ S (3.42)

(b)

∫

...

∫

S

ρ(x) dx = 1 (3.43)

• The probability of any event A ∈ F = BS is then defined as

P (A) =

∫

...

∫

A

ρ(x) dx (3.44)

• It may be verified that the probability function P (.) so defined satisfies

the probability Axioms.

• For now, we shall only consider a special case of (3.42)-(3.43) known as

the uniform probability space.
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Uniform probability space:

• Let S ⊆ Rn. For any event A ∈ BS, we define

M(A) =

∫

...

∫

A

dx (3.45)

The number M(A) (0 ≤M(A) ≤ ∞) is called the measure of A.

• A probability space is uniform (equilikely) if its sample space S ⊆ Rn

has a finite measure, i.e. M(S) <∞, and ρ(x) is constant for all x ∈ S.

• Suppose p(x) is constant. Then, from (3.43), it follows that

ρ(x) =
1

M(S)
, for all x ∈ S (3.46)

• Consider an arbitrary event A ∈ F with measure M(A). Using (3.44),

(3.46) and (3.45), we obtain:

P (A) =

∫

...

∫

A

ρ(x)dx =
M(A)

M(S)
(3.47)
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Remarks:

• For n = 1, 2, 3, the concept of measure admits an immediate physical

interpretation:

A ⊆ R ⇒M(A) = length of A

A ⊆ R2 ⇒M(A) = area of A

A ⊆ R3 ⇒M(A) = volume of S

• In problem statements, look for:

- random selection from

- fair experiment

- uniformly distributed outcomes

Example 3.8:

◮ Consider the random selection of two real numbers x and y from the interval

[0, 1]. What is the probability that x > 2y? ◭
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Conditional Probability and

Independence

• In the context of a random experiment, knowing that a certain event

B has occured may completely change the likelihood we associate to

another event A.

• For example, suppose we roll two fair dice:

- The sample space is S = {(x, y) : x, y ∈ {1, 2, ..., 6}}.
- LetA denote the event that the sum x+y = 11, i.e., A = {(5, 6), (6, 5)},

and letB denote the event that x = 1, i.e. B = {(1, 1), (1, 2), ..., (1, 6)}.
- Assuming that the dice are fair, the probability of A is P (A) = 2/36.

- Now, suppose we know that B occurred, i.e. the first die shows 1.

- Under this “condition”, event A is impossible, and its likelihood or

probability becomes 0.

84



85

• Conditional probabilities provide quantitative measures of likelihood

(probability) under the assumption that certain events have occurred,

or equivalently, that certain a priori knowledge is available.

• In certain situations, knowing that B has occurred does not change the

likelihood of A; this idea is formalized via the mathematical concept of

independence.

• The concepts of conditional probability and independence play a ma-

jor role in the design and analysis of modern information processing

systems, such as digital radio receivers, speech recognition systems, file

compression algorithms, etc.
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4.1 Conditional probability

Relative frequency interpretation:

• Consider a random experiment. Let A and B denote two events of

interest with P (B) > 0.

• Suppose this experiment is repeated a large number of times, say n.

According to the relative frequency interpretation of probability, we have

P (A) ≈ η(A)

n
, P (B) ≈ η(B)

n
, P (A ∩B) ≈ η(A ∩B)

n
(4.1)

where η(A), η(B) and η(A ∩ B) denote the number of occurrences of

events A, B and A ∩B within the n repetitions.

• Provided η(B) is large, the probability of A, knowing or given that B

has occurred, might be evaluated as the ratio

P (A given B) =
η(A ∩B)

η(B)
, (4.2)

also known as a conditional relative frequency.

• Using this approach, we have

P (A given B) =
η(A ∩B)

η(B)
=
η(A ∩B)/n

η(B)/n
≈ P (A ∩B)

P (B)
(4.3)

• This and other considerations lead to the following definition.

c© 2003 Benôıt Champagne Compiled September 12, 2006



4.1 Conditional probability 87

Definition: Consider a random experiment (S,F , P ). Let B ∈ F and assume

that P (B) > 0. For every A ∈ F , the conditional probability of A given B,

denoted P (A|B), is defined as

P (A|B) =
P (A ∩B)

P (B)
(4.4)

Remarks:

• This definition extends the above concept of conditional relative fre-

quency to the axiomatic probability framework.

• Note that P (A|B) is defined only for the case P (B) > 0.

Theorem 4.1: Let B ∈ F with P (B) > 0. The function P ( . |B) : A ∈ F →
P (A|B) ∈ R, as defined in (4.4), satisfies the axioms of probability, that is:

- Axiom 1:

P (A|B) ≥ 0 (4.5)

- Axiom 2:

P (S|B) = 1 (4.6)

- Axiom 3: If A1, A2, ... is a sequence of mutually exclusive events, then

P (
∞⋃

i=1

Ai|B) =
∞∑

i=1

P (Ai|B) (4.7)

Proof: Left as exercise.
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Further remarks:

• For a given event B with P (B) > 0, the mapping A → P (A|B) defines

a valid probability function.

• Consequently, all the basic theorems of Section 3.2 apply to P (A|B) as

well, with trivial modifications in notation. For example, we have

P (A|B) = 1 − P (Ac|B)

P (A ∪ C|B) = P (A|B) + P (C|B) − P (A ∩ C|B)

etc.

Example 4.1:

◮ A random experiment consists in flipping 3 fair coins. What are the chances of

obtaining at least two tails, if we know that the first coin shows heads?

Solution: An adequate sample space is

S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

Note that S contains N(S) = 8 outcomes. Let A denote the event “obtaining

at least two tails”, and B denote the event “first coin shows head”. Using set

notation, we have

A = {HTT, THT, TTH, TTT}
B = {HHH,HHT,HTH,HTT}

A ∩B = {HTT}

Since the coins are assumed to be fair, we can use an equiprobable space as model.

Therefore, we obtain

P (A) = N(A)/N(S) = 4/8 = 1/2

P (B) = N(B)/N(S) = 4/8 = 1/2

P (A ∩B) = N(A ∩B)/N(S) = 1/8

The conditional probability is

P (A|B) =
P (A ∩B)

P (B)
=

1/8

1/2
=

1

4

Note that here, knowledge of B significantly decreases the probability of A. ◭
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Reduction of sample space:

• Generally, for an equiprobable space, we have

P (A|B) =
P (A ∩B)

P (B)
=
N(A ∩B)/N(S)

N(B)/N(S)
=
N(A ∩B)

N(B)
(4.8)

• This leads to the so-called reduced sample space interpretation of the

conditional probability P (A|B):

- Sample space → B

- Event A ⊆ S → A ∩B ⊆ B

- Probability P (A|B) = N(A∩B)
N(B)

• The fact that neither S, nor N(S) are explicitly needed in the com-

putation of P (A|B) may lead to important simplification when solving

certain problems.

• The same ideas extend to uniform probability space in the continuous

case:

P (A|B) =
P (A ∩B)

P (B)
=
M(A ∩B)/M(S)

M(B)/M(S)
=
M(A ∩B)

M(B)
(4.9)

where M(A) denotes the measure of subset A (length, area, etc.).

Example 4.1 (revisited)

◮ Knowing that B has occurred is equivalent to working with the reduced sample

space

B = {HHH,HHT,HTH,HTT} (4.10)

Also, if we know that B has occurred, then s ∈ A is equivalent to s ∈ A ∩ B,

where

A ∩B = {HTT} (4.11)

Thus, according to the reduced sample space interpretation for equiprobable

space, we have

P (A|B) =
N(A ∩B)

N(B)
=

1

4

◭
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4.2 Conditional probability laws

4.2.1 Law of multiplication

Introduction:

• Consider the relation defining the conditional probability of A given B:

P (A|B) =
P (A ∩B)

P (B)
(4.12)

where it is assumed that P (B) > 0.

• From this relation, it follows that

P (A ∩B) = P (A|B)P (B) (4.13)

• The probability that both A and B occur is equal to the conditional

probability of A given B, times the probability of B.

• This relation may be used advantageously to compute P (A ∩ B) when

both P (B) and P (A|B) are available.
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Example 4.2: Car renting problem

◮ A car rental agency has a fleet of 1000 Ford vehicles: 400 Escorts, 400 Taurus

and 200 Explorers. These are equipped with either Firestone or Goodyear tires

in the following proportions:

Firestone Goodyear

Escort 35 % 65 %

Taurus 55 % 45 %

Explorer 40 % 60 %

A customer selects a car at random: what is the probability that he/she ends up

with an Escort equiped with Firestone tires?

Solution: Define the events:

A = {Firestones tires}
B = {Escort}

We seek P (A ∩ B). From the problem statement, the following information is

directly available:

P (B) =
400

1000
= 0.4

P (A|B) = 35% = 0.35

Using relation (4.13), we obtain:

P (A ∩B) = P (A|B)P (B)

= 0.4 × 0.35

= 0.14

◭
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Remarks:

• The multiplicative rule P (A∩B) = P (A|B)P (B) may be generalized to

an intersection of n events, where n is an arbitrary integer ≥ 2.

• To simplify notations, it is convenient to drop the ∩ sign for intersection,

i.e. AB = A ∩B.

Theorem 4.2: Let A1, A2, ..., An be such that P (A1A2...An−1) > 0. Then

P (A1A2...An) = P (A1)P (A2|A1)P (A3|A1A2) · · ·P (An|A1A2...An−1) (4.14)

Proof: First note that P (A1A2...An−1) > 0 implies P (A1) > 0, P (A1A2) > 0,

. . . , P (A1A2, ..., An−1) > 0. Thus, all the conditional probabilities on the

right-hand side (RHS) of (4.14) are well-defined and we have

RHS = P (A1)
P (A1A2)

P (A1)

P (A1A2A3)

P (A1A2)
· · · P (A1A2...An)

P (A1A2...An−1)

which is identical to the left-hand side (LHS) after simplification. �
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Remarks:

• Theorem 4.2 is called the law of multiplication; it is also known as the

chain rule of probability.

• The theorem is useful when it is desired to compute P (A1A2...An) and

the conditional probabilities in (4.14) may be easily evaluated.

• This often occurs for instance when dealing with temporal or logical

sequences of events, as exemplified below.

Example 4.3:

◮ An urn contains 10 white balls and 5 black balls. We draw three balls from the

urn without replacement. We assume that at each draw, each ball remaining in

the urn is equally likely to be chosen. What is the probability that the three balls

selected are all white?

Solution: Define the events

Wi = {selecting white ball at the ith draw}

We seek

P (W1W2W3) = P (W1)P (W2|W1)P (W3|W1W2)

From the problem statement, we find:

P (W1) =
10

15
and P (W2|W1) =

9

14

since after the first draw, given a white ball was selected, only 14 balls remain

out of which 9 are white. Similarly,

P (W3|W1W2) =
8

13

Therefore

P (W1W2W3) =
10

15
· 9

14
· 8

13
= 0.264.

◭
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4.2.2 Law of total probability

Introduction:

• Using Theorem 3.5 and the law of multiplication in (4.13), we can write:

P (A) = P (AB) + P (ABc)

= P (A|B)P (B) + P (A|Bc)P (Bc) (4.15)

where it is assumed that P (B) > 0 and P (Bc) > 0.

• This result is useful when we desire to compute P (A) and the conditional

probabilities P (A|B) and P (A|Bc) may be obtained easily.

Example 4.4:

◮ An urn contains 10 white balls and 5 black balls. We draw two balls from the

urn at random, without replacement. What is the probability that the second

ball is white?

Solution: Proceeding as in Example 4.3, define the events

Wi = {selecting white ball at the ith draw}
Bi = {selecting black ball at the ith draw}

We seek P (W2). Using (4.15) with A ≡ W2, B ≡ W1 and Bc ≡ B1, we obtain

P (W2) = P (W2|W1)P (W1) + P (W2|B1)P (B1)

=
9

14
· 10

15
+

10

14
· 5

15

=
10

15
·
(

9

14
+

5

14

)

=
2

3

One might find it surprising that the answer to this problem is 2/3, which is

precisely the initial proportion of white balls in the urn, i.e. before the first draw.

However, on second thought, in the absence of a priori knowledge about the

result of the first draw, there is no apparent reason for the probability to be

different from 2/3. ◭
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Partition:

• A decomposition of a sample space S into a union of 2 or more, disjoint,

non-empty subsets is called a partition of S.

• Specifically, we say that the sets B1, B2, ..., Bn form a partition of S iff

(1) Bi 6= ∅ for all i ∈ {1, ..., n}
(2) BiBj = ∅ for all i 6= j

(3) ∪ni=1Bi = S

• For example, the sets B1 = {a, b}, B2 = {c} and B3 = {d, e} form a

partition of S = {a, b, c, d, e}.

Remarks:

• Note that in (4.15), the sets B and Bc form a partition of S. (B and Bc

are assumed non-empty, B ∩Bc = ∅ and B ∪Bc = S).

• It turns out that (4.15) can be generalized to an arbitrary partition of

S into n disjoint subsets, where n is a positive integer.
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Theorem 4.3: LetB1, B2, ..., Bn be a partition of S and assume that P (Bi) > 0

for i = 1, ..., n. Then

P (A) =
n∑

i=1

P (A|Bi)P (Bi) (4.16)

Proof: Since S = B1 ∪B2 ∪ ... ∪Bn, we have

A = AS

= A(B1 ∪B2 ∪ ... ∪Bn)

= (AB1) ∪ (AB2) ∪ ... ∪ (ABn) (4.17)

From BiBj = ∅ for i 6= j, it follows that (ABi) ∩ (ABj) for i 6= j. Using

probability Axiom 3 and the law of multiplication, we finally have:

P (A) =
n∑

i=1

P (ABi) =
n∑

i=1

P (A|Bi)P (Bi) � (4.18)

Remarks:

• Theorem 4.3 is called the law of total probability.

• We say total because the summation in (4.18) is over all the possible

different ways of getting A.
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Example 4.5: Car renting problem revisited

◮ A car rental agency has a fleet of 1000 Ford vehicules: 400 Escort, 400 Taurus

and 200 Explorer. These are equiped with either Firestone or Goodyear tires in

the following proportions:

Firestone Goodyear

Escort 35 % 65 %

Taurus 55 % 45 %

Explorer 40 % 60 %

A customer selects a car at random: what is the probability that he/she ends up

with a car equiped with Firestone tires?

Solution: We seek P (A) where

A = {Firestones tires}.

This information is not directly available from the problem statement. To over-

come this difficulty, let us introduce

B1 = {Escort}
B2 = {Taurus}
B3 = {Explorer}

We note that B1, B2, B3 form a partition of the sample space. Thus, we may use

the law of total probabilities to express P (A) in terms of known quantities as

follows:

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

= 0.35 × 400

1000
+ 0.55 × 400

1000
+ 0.4 × 200

1000
= 0.44

◭
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4.2.3 Bayes’ formula

Introduction:

• Suppose that we know P (B), P (Bc), P (A|B) and P (A|Bc). How can

we compute P (B|A)?

• Basic approach:

(1) Use definition of conditional probability:

P (B|A) =
P (AB)

P (A)
(4.19)

(2) Use law of multiplication to expand numerator P (AB):

P (AB) = P (A|B)P (B) (4.20)

(3) Use law of total probability to expand denominator:

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc) (4.21)

• This approach may be summarized by the formula:

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
(4.22)
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Example 4.6:

◮ An urn contains 10 white balls and 5 black balls. We draw two balls from the

urn at random, without replacement. Given the second ball is white, what is the

probability that the first one was also white?

Solution: Define events Wi and Bi as in Example 4.4. We seek P (W1|W2).

Making use of (4.22), we obtain

P (W1|W2) =
P (W2|W1)P (W1)

P (W2|W1)P (W1) + P (W2|B1)P (B1)

=
9

14
· 2

3

9

14
· 2

3
+ 10

14
· 1

3

=
9

14

This result admits a simple interpretation in terms of reduced sample space: given

that the second ball is white is equivalent to selecting the first ball randomly

among a reduced set of 14 balls containing 9 white and 5 black, hence the result.

Warning: Although effective in this simple example, the use of a reduced sample

space approach to solve more complex conditional probability problems requires

great care, or it may lead to an erroneous solution. The use of a deductive

approach (e.g. 4.22) is recommended. ◭
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Remarks:

• In (4.22), events B and Bc form a partition of the sample space S.

• As for the law of total probability, (4.22) may be generalized to an

arbitrary partition B1, B2, . . . , Bn of S.

Theorem 4.4: Suppose B1, B2, ..., Bn is a partition of S with P (Bi) > 0 for

i = 1, ..., n. Let A be any event with P (A) > 0. Then, for any k ∈ {1, ..., n}

P (Bk|A) =
P (A|Bk)P (Bk)

∑n
i=1 P (A|Bi)P (Bi)

(4.23)

Proof: From the definition of conditional probability, we have

P (Bk|A) =
P (BkA)

P (A)

Using the law of multiplication, the numerator can be expressed as

P (BkA) = P (A|Bk)P (Bk)

Using the law of total probability, the denominator can be expanded as

P (A) =
n∑

i=1

P (A|Bi)P (Bi)

The desired result follows by combining the above expressions. �
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Remarks:

• Theorem 4.4 is also known as Bayes’ formula.

• Bayes formula is useful when the probabilities P (Bi) and P (A|Bi) are

known for i = 1, ..., n, and it is desired to compute P (Bk|A) for one or

more values of k.

• In statistical applications of this formula, the following special terminol-

ogy is often used:

- The events Bi (i = 1, ..., n), which form a partition of S, are called

hypotheses.

- The probabilities P (Bi) (i = 1, ..., n) are called a priori probabilities

(i.e., before knowing that A occurred).

- The conditional probabilities P (Bk|A) (k = 1, ..., n) are called a

posteriori probabilities (i.e., after knowing that A occurred).
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Example 4.7: Car renting problem, again

◮ A car rental agency has a fleet of 1000 Ford vehicules: 400 Escorts, 400 Taurus

and 200 Explorers. These are equipped with either Firestone or Goodyear tires

in the following proportions (in %):

Firestone Goodyear

Escort 35 % 65 %

Taurus 55 % 45 %

Explorer 40 % 60 %

A customer selects a car at random: given that the car is equiped with Firestone

tires, what is the probability that it is an Explorer?

Solution: Define the events

A = {Firestones tires}
B1 = {Escort}
B2 = {Taurus}
B3 = {Explorer}

where B1, B2, B3 form a partition of the sample space. We seek P (B3|A). Using

Bayes’ formula, we find

P (B3|A) =
P (A|B3)P (B3)

∑3

i=1
P (A|Bi)P (Bi)

=
40% × 200

1000

0.44
= 0.18

where the value of 0.44 for the denominator has already been computed in ex-

ample 4.5. ◭
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4.3 Independence

Introduction:

• Consider a random experiment in which a fair coin is tossed twice:

S = {HH,HT, TH, TT}

• Consider the two events:

A = {heads up on first toss} = {HH,HT} =⇒ P (A) = 1/2

B = {heads up on second toss} = {HH,TH} =⇒ P (B) = 1/2

• How does knowledge that B occurred affects the likelihood of A?

AB = A ∩B = {HH} =⇒ P (AB) = 1/4

P (A|B) =
P (AB)

P (B)
=

1/4

1/2
=

1

2
= P (A)

• Since P (A|B) = P (A), we conclude that the occurrence of B has no

effect on the likelihood of A. We say that A is independent of B
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Discussion:

• If A is independent of B, as defined above, then:

P (A|B) = P (A) ⇒ P (AB)

P (B)
= P (A)

⇒ P (AB) = P (A)P (B) (4.24)

• In turns, it follows from (4.24) that (assume P (A) > 0):

P (B|A) =
P (BA)

P (A)
= P (B) (4.25)

• Thus, A independent of B implies that B independent of A. We say

that independence is a symmetric relation.

• Because of this symmetry, it is more natural (and practical) to define

independence directly in terms of (4.24).
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Definition: Two events A and B are called independent iff

P (AB) = P (A)P (B) (4.26)

Remarks:

• This definition is valid even when P (A) = 0 or P (B) = 0.

• If A and B are independent, with P (B) > 0, then

P (A|B) =
P (AB)

P (B)
= P (A) (4.27)

so that occurrence of B does not affect likelihood of A. Similarly, as-

suming P (A) > 0, we have P (B|A) = P (B).

• Independence conveys the idea of an absence of a causal relation between

events A and B.

• It is not always obvious that two events A and B are independent.
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Example 4.8:

◮ A card is drawn randomly form a 52-card deck. Consider the events A =

{getting a heart} and B = {getting an ace}. Here, we have:

P (A) = 13/52 = 1/4

P (B) = 4/52 = 1/13

P (AB) = P ({ace of heart}) = 1/52

Since P (AB) = P (A)P (B), we conclude that A and B are independent. ◭

Example 4.9:

◮ An urn contains 10 white balls and 5 black balls. Suppose that two balls are

picked at random from the urn. Let W1 and W2 denote the events that the first

and second ball is white, respectively. Determine whether or not these two events

are independent if (a) the balls are selected with replacement and (b) without

replacement?

Solution: ◭
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Theorem 4.5: If A and B are independent, then so are the pairs:

(a) A and Bc .

(b) Ac and B .

(c) Ac and Bc .

Proof: From Theorem 3.5, we have

P (A) = P (AB) + P (ABc) (4.28)

Thus, using the fact that A and B are independent,

P (ABc) = P (A) − P (AB)

= P (A) − P (A)P (B)

= P (A)(1 − P (B))

= P (A)P (Bc) (4.29)

This shows that A and Bc are independent. By symmetry, it follows that Ac

and B are independent, and from that, we finally deduce that Ac and Bc are

independent. �
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Definition: The events A1, A2, ..., An are called (mutually) independent iff all

the relations below hold:

P (AiAj) = P (Ai)P (Aj) for all i < j (4.30)

P (AiAjAk) = P (Ai)P (Aj)P (Ak) for all i < j < k (4.31)

· · ·
P (A1A2...An) = P (A1)P (A2)...P (An) (4.32)

Remarks:

• (4.30) is called pairwise independence.

• (4.30)-(4.32) is called mutual independence (much stronger).

• For example, consider three events A, B and C:

- mutual independence implies that A and B ∪ C are independent;

- pairwise independence DOES NOT.

• In applications, mutual independence is often put forward as an assump-

tion (probability model) in the solution of a complex problem.
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Example 4.10:

◮ Consider the electric circuit shown below in which each of the four switches,

labelled S1, S2, S3 and S4, is independently closed or open with probability p

and 1−p, respectively. If a voltage is applied at the input, what is the probability

that it is transmitted at the output? ◭
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4.4 Product of independent experiments

Introduction:

• Often, a random experiment may be viewed as a compounded exper-

iment, made up of “smaller”, independent experiments that occur se-

quentially and/or concurrently in time.

• Some examples include:

- flipping a coin, then rolling a die,

- drawing N cards with replacement from a 52-card deck,

- transmitting a sequence of 108 bits over a digital link.

• In this section:

- a basic mathematical framework is developed to deal with such sit-

uations;

- a special case of particular interest (i.e. Bernouilli trials) is then

investigated.
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4.4.1 The basic model

Definition: We say that random experiment (S,F , P ) is the product of n

random experiments (Si,Fi, Pi) if

(a) S = S1 × S2 × ...× Sn, where × denotes the cartesian product.

(b) F is the smallest σ-algebra containing all cartesian products of the type

A1 × A2 × ...× An, with Ai ∈ Fi.

(c) For any Ai ∈ Fi, i = 1, . . . , n, we have

P (S1 × . . .× Si−1 × Ai × Si+1 × . . .× Sn) = Pi(Ai) (4.33)

Definition: Within this framework, we say that the sub-experiments (Si,Fi, Pi)

are independent (also called independent trials) if conditions (a), (b) and (c)

above are satisfied and if

P (A1 × A2 × ...× An) = P1(A1)P2(A2)...Pn(An) (4.34)

Remarks:

• Note that condition (4.34) supersedes condition (4.33).

• As a consequence of (4.34), the probability of any event associated to the

product experiment may be computed from the individual probability

functions associated to the sub-experiments.

• The use of (4.34) as a probability model is extremely useful. However,

it must be justified on physical and/or experimental grounds, as it will

not be valid for all kinds of combined experiments.
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Example 4.11:

◮ A random experiment consist in the following sequence of two sub-experiments,

each one characterized by its own probability space:

• Firstly, flipping a fair coin once:

- Sample space: S1 = {H,T}
- Probability function: P1({H}) = P1({T}) = 1/2

• Secondly, rolling a fair die once:

Sample space: S2 = {1, 2, 3, 4, 5, 6}
Probability: P2({i}) = 1/6 for i = 1, ..., 6

In this type of situation, and in the absence of further information, it is reasonable

to assume that the sub-experiments are independent. The sample space of the

product experiment is then

S = S1 × S2

= {ai : a ∈ {H,T} and i ∈ {1, 2, 3, 4, 5, 6}}
= {H1, H2, ..., H6, T1, T2, ..., T6}

For any A1 ⊆ S1 and A2 ⊆ S2, we have by assumption:

P (A1 × A2) = P1(A1)P2(A2)

For example, define the events

A1 = {coin shows heads} = {H}
A2 = {die shows even} = {2, 4, 6}

The probability of the compound event A1 × A2 = {heads followed by even} in

the product experiment can be obtained as:

P (A1 × A2) = P1(A1)P2(A2) =
1

2
· 1

2
=

1

4

In fact, since for any outcome ai ∈ S, we have {ai} = {a} × {i}, it follows that

P ({ai}) = P1({a})P2({i}) =
1

2
· 1

6
=

1

12
(4.35)

In this example, the assumption of independent experiments is equivalent to an

equiprobable model for the combined experiments, which is intuitively satisfying.

◭
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Theorem 4.6: Let (S,F , P ) be the product of n random experiments (Si,Fi, Pi),

i = 1, ..., n. The product space (S,F , P ) is equiprobable if and only if the

sub-experiments (Si,Fi, Pi) are independent and equiprobable.

Remarks:

• The theorem provides a nice generalization Example 4.11.

• It gives one particular set of conditions under which independence of the

sub-experiments is satisfied.

• The next theorem provides a link between the notions of independent

experiments and mutually independent events.

Theorem 4.7: Let (S,F , P ) be a product of n independent experiments

(Si,Fi, Pi). Suppose that events A1, . . . ,An in F are such that the occur-

rence of Ai only depends on the result of the ith experiment. The events

A1, . . . ,An are then mutually independent.

Remarks:

• The statement that the occurrence of event Ai only depends on result

of the ith experiment is equivalent to

Ai = S1 × . . .× Si−1 × Ai × Si+1 × . . .× Sn (4.36)

for some Ai ∈ Si.

• The proof of Theorem 4.7 amounts to showing that

P (A1 ∩ A2 ∩ ... ∩ An) = P (A1)P (A2)...P (An) (4.37)

This follows easily by using (4.36) in combination with (4.34).
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Proof of Theorem 4.7 (optional reading): To simplify the presentation, as-

sume n = 2. The statement that Ai only depends on the result of the ith

experiment is equivalent to

A1 = A1 × S2 where A1 ⊆ S1 (4.38)

A2 = S1 × A2 where A2 ⊆ S2 (4.39)

From (4.34), it follows that

P (A1) = P (A1 × S2) = P1(A1)P2(S2) = P1(A1) (4.40)

P (A2) = P (S1 × A2) = P1(S1)P2(A2) = P2(A2) (4.41)

Now, since

A1 ∩ A2 = (A1 × S2) ∩ (S1 × A2) = A1 × A2,

we obtain

P (A1 ∩ A2) = P (A1 × A2)

= P1(A1)P2(A2) = P (A1)P (A2) (4.42)

This shows that A1 and A2 are independent. �

Further remarks (optional reading):

• To simplify notations, it is common practice to identify the events Ai ⊆
S with the corresponding events Ai ⊆ Si and to write (4.34) in the form

P (A1 ∩ A2 ∩ ... ∩ An) = P (A1)P (A2)...P (An) (4.43)

• Note that in (4.43), the P (.) on the LHS and RHS really represent dif-

ferent functions; also, the intersections on the LHS represents cartesian

products.
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4.4.2 Sequence of Bernouilli trials

Definition: A Bernouilli trial is a random experiment (S,F , P ) in which

a particular event A ∈ F has been identified and assigned a probability

p = P (A), 0 ≤ p ≤ 1.

Remarks:

• Clearly, event A may or not occur during the trial.

• Event A is called a success, while its complement Ac is called a failure.

• p = P (A) = is called probability of success, while q , P (Ac) = 1 − p =

is the probability of failure.

Example: Basic examples of Bernouilli trials include:

• Getting heads when flipping a fair coin: A = {H}, Ac = {T}, p = 1/2.

• Getting five or more when rolling a fair die: A = {5, 6}, Ac = {1, 2, 3, 4},
p = 1/3.

Definition: A sequence of Bernouilli trials is a product experiment that con-

sists of n identical and independent Bernouilli trials, each with probability of

success p.

Examples:

• Sequence of 10 independent flips of a coin.

• Independent transmission of 1012 bits over a digital communication link.
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Theorem 4.8 (Bernouilli law): The probability of k successes in a sequence

of n Bernouilli trials, with individual probability of success p, is given by:

P (k, n) =

(
n

k

)

pk(1 − p)n−k (4.44)

Proof: Think of the outcome of a sequence of n Bernouilli trials as an n-tuple

of the form a1a2 . . . an where each ai may take the value S for success or F

for failure. In this setting, obtaining k successes corresponds to an n-tuple

containing letter S in exactly k positions (and letter F in the remaining n−k
positions). Note the following:

- Because of the independence assumption, the probability of occurrence

of each such n-tuple of k successes is given by pk(1 − p)n−k.

- The number of different n-tuples containing letter S in exactly k position

is given by
(
n
k

)
.

Hence, from the additivity property of probability (Axiom 3), the probability

of k successes is obtained as (4.44). �

Example 4.12:

◮ Consider a biased (unfair) coin with P (H) = 0.6 and P (T ) = 0.4. What is the

probability of exactly two heads in 5 independent throws? ◭
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Problems

1. We draw 8 cards at random from a 52-card deck, without replacement. Given that

at least 3 out of the 8 cards are spades, what is the probability that all 8 cards are

spades?

2. A box contains 95 good resistors and 5 bad ones. To find the bad one, a student

decides to test them one by one (without replacement). If the first 15 resistors are all

good, what is the probability that the next one is defectuous? (Hint: you may to try

a reduced sample space approach).

3. Consider the independent transmission of binary digits (or bits) over a noisy commu-

nication channel. Suppose that for each bit, the probability of making an error during

transmission (e.g.: send 1 and receive 0) is equal to p (0 < p ≪ 1). Consider the

transmission of n consecutive bits. Find the probability (a) of making no errors; (b)

of making 1 error and (c) of making 2 errors. Evaluate numerically for p = 10−4 and

n = 108.
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Chapter 5

Introduction to Random Variables

Consider a random experiment described by a triplet (S,F , P ). In applica-

tions of probabilities, we are often interested in numerical quantities derived

from the experimental outcomes. These quantities may be viewed as func-

tions from the sample space S into the set of real numbers R, as in:

s ∈ S → X(s) ∈ R

Provided certain basic requirements are satisfied, these quantities are gener-

ally called random variables.

As an example, consider the sum of the two numbers showing up when rolling

a fair die twice:

• The set of all possible outcomes is S = {(i, j) : i, j ∈ {1, 2, ..., 6}}.
• The sum of the two numbers showing up may be represented by the

functional relationship

s = (i, j) → X(s) = i+ j.

• Note that the function X(s) may be used in turn to define more complex

events. For instance, the event that the sum is greater or equal to 11

may be expressed concisely as A = {s ∈ S : X(s) ≥ 11}
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The terminology random variable is appropriate in this type of situations

because:

• The value X(s) depends on the experimental outcome s.

• The outcome s of a particular realization of the random experiment

(i.e. a trial) is unknown beforehand, and so is X(s).

• Each experimental trial may lead to a different value of X(s)

Random variables are extremely important in engineering applications. They

are often used to model physical quantities of interest that cannot be pre-

dicted exactly due to uncertainties. Some examples include:

• Voltage and current measurements in an electronic circuit.

• Number of erroneous bits per second in a digital transmission.

• Instantaneous background noise amplitude at the output of an audio

amplifier.

Modelization of such quantities as random variables allows the use of proba-

bility in the design and analysis of these systems.

This and the next few Chapters are devoted to the study of random variables,

including: definition, characterization, standard models, properties, and a lot

more...

In this Chapter, we give a formal definition of a random variable, we introduce

the concept of a cumulative distribution function and we introduce the basic

types of random variables.
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5.1 Preliminary notions 120

5.1 Preliminary notions

Function from S into R:

• Let S denote a sample space of interest.

• A function from S into R is a mapping, say X, that associate to every

outcome in S a unique real number X(s):

S

mapping X

real axis
s

1

s
2

s
3

X(s
1
) X(s

2
)=X(s

3
)

Figure 5.1: Illustration of a mapping X from S into R.

• The following notation is often used to convey this idea:

X : s ∈ S → X(s) ∈ R. (5.1)

• We refer to the sample space S as the domain of the function X.

• The range of the function X, denoted RX , is defined as

RX = {X(s) : s ∈ S} ⊆ R (5.2)

That is, RX is the of all possible values for X(s), or equivalently, the

set of all real numbers that can be “reached” by the mapping X.
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Inverse function:

• Let X be a function from S into R.

• We define the inverse function X−1 as follows: for any subset D of R,

X−1(D) = {s ∈ S : X(s) ∈ D} (5.3)

• That is, X−1(D) is the subset of S containing all the outcomes s (possibly

more than one) such that X(s) is in D. This is illustrated below.

S

mapping X-1

real axis

D=[a,b]X-1(D)

Figure 5.2: Illustration of inverse mapping X−1

• This definition of an inverse is very general; it applies even in the case

when X is many-to-one.

Left semi-infinite intervals:

• To every x ∈ R, we associate a left semi-infinite interval Ix, defined as

Ix , (−∞, x] = {y ∈ R : y ≤ x} (5.4)

• The inverse image of Ix under mapping X is given by

X−1(Ix) = {s ∈ S : X(s) ≤ x} (5.5)
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5.2 Definition of a random variable

Definition: Let (S,F , P ) be a probability space. A function X : s ∈ S →
X(s) ∈ R is called a random variable (RV) if

X−1(Ix) = {s ∈ S : X(s) ≤ x} ∈ F , for all x ∈ R (5.6)

Discussion:

• According to this definition, X defines a mapping from sample space S

into R, as illustrated in Figure 5.1

• However, X is not arbitrary: we require that for any x ∈ R, the inverse

image X−1(Ix), as illustrated in Figure 5.3, be a valid event.

S

mapping X-1

real axis

X-1(I
x
) x

I
x

Figure 5.3: Inverse image X−1(Ix)

• This condition ensures that P ({s ∈ S : X(s) ≤ x}), i.e. the probability

that X(s) belong to the interval Ix, is well-defined.
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Example 5.1:

◮ A fair coin is flipped twice. Let random variable X represent the number of tails

observed in this experiment. Here, the sample space may be defined as

S = {HH,HT, TH, TT}

Since this is a finite set, a proper choice of event algebra is

F = PS = {∅, {HH}, . . . , S}

Note that F contains 24 = 16 events. According to the problem statement, the

function X : S → R may be computed as follows:

s = HH → X(s) = 0

s = HT or TH → X(s) = 1

s = TT → X(s) = 2

so that its range is RX = {0, 1, 2}. This is illustrated below:

For any x ∈ R, we have

X−1(Ix) = {s ∈ S : X(s) ≤ x} ∈ F

since Ix is a subset of S and F = PS contains all the possible subsets of S. This

shows that X is a valid random variable. For instance:

x < 0 ⇒ X−1(Ix) = ∅ ∈ F
0 ≤ x < 1 ⇒ X−1(Ix) = {HH} ∈ F
1 ≤ x < 2 ⇒ X−1(Ix) = {HH,HT, TH} ∈ F

2 ≤ x ⇒ X−1(Ix) = S ∈ F
·

◭
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Remarks on condition (5.6):

• By definition, X−1(Ix) = {s ∈ S : X(s) ≤ x} is a subset of S. Therefore,

whenever F = PS, condition (5.6) is satisfied and we need not worry

about it. This is the case when S is finite or countably infinite.

• When S is uncountably infinite and F = BS, there exist functions X :

S → R that do not satisfy condition (5.6) and for which P ({s ∈ S :

X(s) ≤ x}) is not defined. It is precisely to avoid this situation that

(5.6) is included in the definition of a random variable.

• In applications, we will want to compute probabilities of the type

P ({s ∈ S : X(s) ∈ D})

where D ⊆ R represents any practical subset of real numbers. This

includes, for example, intervals of the type [a, b], for any a ≤ b ∈ R, as

well as unions, intersections and/or complements of such intervals.

• As a consequence of condition (5.6), it can be shown that

{s ∈ S : X(s) ∈ D}) ∈ F

for any D ∈ BR, so that P ({s ∈ S : X(s) ∈ D}) is well-defined for any

practical subset of real-numbers (see next page for more on this).

• In this course, we shall work with relatively simple functions X and shall

always assume that the condition X−1(Ix) ∈ F is satisfied.
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Further remarks (optional reading):

• The condition X−1(Ix) ∈ F in the definition of random variable X ensures that

X−1(Ix) = {s ∈ S : X(s) ≤ x}

is a valid event, for which the probability P (X−1(Ix)) is well-defined.

• More importantly, the condition ensures that for practical subsets of real numbers

encountered in applications of probability, i.e. for any D ∈ BR, the Borel field of R,

the set of experimental outcomes

X−1(D) = {s ∈ S : X(s) ∈ D}

is also a valid event for which a probability can be computed.

• While the detail of the proof are beyond the scope of this course, the justification of

this statement involves three basic steps:

- Any real number subset D ∈ BR can be expressed as a combination of unions,

intersections and complements of basic intervals of the type Ix.

- Because X−1(Ix) ∈ F for any x and because F is a σ-algebra (closed under union,

intersection and complement), it follows that X−1(D) is also in F .

- Finally, X−1(D) ∈ F implies that P (X−1(D)) is well-defined.

• In the next section, we will see how P (X−1(Ix)) can actually be used in the computation

of P (X−1(D)).
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Simplified notations:

• Let D ⊆ R. The following notations for X−1(D) are equivalent:

X−1(D) = {s ∈ S : X(s) ∈ D} = {X ∈ D} (5.7)

The notation {X ∈ D} is generally preferred. When using it, you should

keep in mind that it really refers to an event, i.e. a subset of S.

• When referring to the probability of the event {X ∈ D}, we often drop

the curly brackets. The following notations are thus equivalent:

P ({s ∈ S : X(s) ∈ D}) = P ({X ∈ D}) = P (X ∈ D) (5.8)

• The notation X(.) is used to represent the function X : S → R, while

the notation X(s) means the value of X(.) at the point s. In proba-

bility textbooks, X is often used to denote both X(.) and X(s); the

interpretation is context dependent.
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5.3 Cumulative distribution function

Introduction:

• Let X be a random variable defined on (S,F , P ).

• According to the definition of a random variable, this implies that the

probability P (X ≤ x) is well-defined for any real-number x.

• If P (X ≤ x) is known for all x ∈ R, it is possible (in theory) to compute

P (X ∈ D) for essentially any subset D ⊆ R of practical interest.

• For this reason, the quantity P (X ≤ x), seen as a function of x, plays a

very important role in probability and is thus given a special name.

Definition: The function F : R → [0, 1] defined by

F (x) , P (X ≤ x), for all x ∈ R (5.9)

is called the cumulative distribution function (CDF) of X.

Remarks:

• One should bear in mind that F (x) = P (X ≤ x) really means

F (x) = P ({s ∈ S : X(s) ≤ x})

• We say cumulative because as x increases, the set {s ∈ S : X(s) ≤ x}
includes more and more possible outcomes s ∈ S.
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Example 5.2:

◮ A random experiment consists in flipping two fair coins. Let RV X represents

the number of tails. Find the CDF of X?

Solution:

• Sample space: S = {HH,HT, TH, TT}
• Values of interest for X: s ∈ S ⇒ X(s) ∈ {0, 1, 2} = RX

• Corresponding probabilities:

P (X = 0) = P ({HH}) = 1/4

P (X = 1) = P ({HT, TH}) = 1/2

P (X = 2) = P ({TT}) = 1/4

• Distribution function:

x < 0 ⇒ F (x) = P (X ≤ x) = 0

0 ≤ x < 1 ⇒ F (x) = P (X ≤ x) = P (X = 0) = 1/4

1 ≤ x < 2 ⇒ F (x) = P (X ≤ x) = P (X = 0) + P (X = 1) = 3/4

2 ≤ x ⇒ F (x) = P (X ≤ x) = 1

• Graphical representation of F (x):

x

F(x)

0 1 2

1

◭

c© 2003 Benôıt Champagne Compiled September 12, 2006



5.3 Cumulative distribution function 129

Theorem 5.1: The CDF F (x) satisfies the following basic properties:

(a)

a < b⇒ F (a) ≤ F (b) (5.10)

(b)

F (∞) ≡ lim
x→∞

F (x) = 1 (5.11)

(c)

F (−∞) ≡ lim
x→−∞

F (x) = 0 (5.12)

(d)

F (a+) ≡ lim
x→a+

F (x) = F (a) (5.13)

(e)

F (a−) ≡ lim
x→a−

F (x) = F (a) − P (X = a) (5.14)

Remarks:

• According to (a), F (x) is non-decreasing.

• From properties (b) and (c), it follows that F (x) is lower bounded by 0

in the limit x→ −∞ and upper bounded by 1 in the limit x→ ∞.

• According to (d), F (x) is right continuous.

• However, from (e), we conclude that F (x) is not necessarily left-continuous:

- if not, the size of the jump at x = a, i.e. the difference F (a)−F (a−),

is equal to the probability P (X = a).

- if F (x) is continuous at x = 1 (i.e. no jump), then P (X = a) = 0.
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Proof:

(a) Let a and b be arbitrary real numbers with a < b. We have

a < b ⇒ {X ≤ a} ⊆ {X ≤ b}
⇒ P (X ≤ a) ≤ P (X ≤ b)

⇒ F (a) ≤ F (b)

where the second line follows from Theorem 3.3.

(b) For n ∈ N, the sets An , {s ∈ S : X(s) ≤ n} define an increasing

sequence of events with limn→∞An = ∪∞
n=1An = S, where S is the

sample space. Thus, making use of Theorem 3.6, we have

lim
n→∞

F (n) = lim
n→∞

P ({s ∈ S : X(s) ≤ n})
= lim

n→∞
P (An)

= P ( lim
n→∞

An)

= P (S) = 1 (5.15)

Because F (x) is non-decreasing and ≤ 1, (6.11) this in turns imply

limx→∞ F (x) = 1.

(c)-(e) Left as optional exercise for the student. �
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Remarks:

• Any function F : R → [0, 1] satisfying properties (a)-(d) above is gener-

ally called a cumulative distribution function.

• In theory, if the CDF F (x) = P (X ≤ x) is known for all x ∈ R, it can

be used to compute the probability of any event of the type {s ∈ S :

X(s) ∈ D} where D ⊆ BR.

• This is illustrated in the example below.

Example 5.3:

◮ Let a and b be arbitrary real numbers such that a < b. Express the following

probabilities in terms of the CDF F (x): P (X > a), P (X = a), P (X < a) and

P (a < X ≤ b).

Solution: Since {X > a} is the complement of {X ≤ a}, we have:

P (X > a) = 1 − P (X ≤ a)

= 1 − F (a) (5.16)

From Theorem 5.1, (e):

P (X = a) = F (a) − F (a−) (5.17)

Note that {X < a} = {X ≤ a} − {X = a}, where {X = a} ⊆ {X ≤ a}.
Therefore, using Theorem 3.3, we have:

P (X < a) = P (X ≤ a) − P (X = a)

= F (a) − (F (a) − F (a−))

= F (a−) (5.18)

Since {a < X ≤ b} = {X ≤ b} − {X ≤ a}, with {X ≤ a} ⊆ {X ≤ b}, we have

similarly:

P (a < X ≤ b) = P (X ≤ b) − P (X ≤ a)

= F (b) − F (a) (5.19)

◭
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List of formulae:

• A more complete list of such properties is given below:

Event Expression

X ≤ a F (a)

X < a F (a−)

X > a 1 − F (a)

X ≥ a 1 − F (a−)

X = a F (a) − F (a−)

a < X ≤ b F (b) − F (a)

a ≤ X ≤ b F (b) − F (a−)

a < X < b F (b−) − F (a)

a ≤ X < b F (b−) − F (a−)

• The student should not try to remember this list. Instead, he/she should

be able to reconstruct it starting from basic properties of F (x).
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Example 5.4:

◮ Consider the following CDF:

F (x) =







0 x < −1,

(x+ 1)/4 −1 ≤ x < 0,

(x+ 3)/4 0 ≤ x < 1,

1 1 ≤ x .

whose graph is illustrated below: Using above formulae, we have, for example:

x

F(x)

0 1-1

1

P (X < 0) = F (0−) = 1/4

P (X ≤ 0) = F (0) = 3/4

P (X = 0) = F (1) − F (1−) = 1/2

P (0 ≤ X ≤ 1) = F (1) − F (0−) = 3/4

etc.

◭
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5.4 Classification of random variables

For the purpose of studying their properties, it is convenient to classify ran-

dom variables according to the behavior of their CDF F (x). Specifically:

• We say that a random variable X is discrete if its CDF F (x) is flat, ex-

cept for a finite or countably infinite number of discontinuities (i.e. jumps).

A basic example is the number of tails when flipping a coin twice, as dis-

cussed in Example 5.2.

• We say that a random variable X is continuous if its CDF F (x) is an

(absolutely) continuous function of x. A basic example of this would be

the waiting time of a person at a bus stop.

• Otherwise we say that a random variable has a mixed behavior. The

CDF F (x) in Example 5.4 fits into this category.

In the next two Chapters, we study discrete and continuous RVs separately.

In each case, we include:

• A formal definition of the class and related special properties of the CDF.

• Definition of the expectation operation, which provides an extension to

the intuitive notion of averaging and plays a major role in applications.

• Study of particular RVs of interest.

This is followed by another Chapter which provides a unifying framework for

the study of the above three types of RVs. The important concept of moment

generating function is also covered.
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Chapter 6

Discrete Random Variables

This Chapter focusses on discrete random variables, including:

• Formal definition

• Probability mass function

• Expected value and variance

• Standard discrete RVs of interest (Binomial, Poisson, etc.)
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6.1 Basic concepts

Definition: LetX be a random variable defined on probability space (S,F , P ).

We say that X is discrete if its CDF is a step function. That is, there exists

a finite or countably infinite set of points, say {xi}, such that

(a) F (x) admits a positive step (or jump) at any point xi;

(b) F (x) remains constant (flat) between any two consecutive jump points,

that is, the derivative

F ′(x) = 0, for all x ∈ R − {xi}. (6.1)

Example 6.1:

◮ Let the random variable X represents the number of tails obtained when flipping

a fair coin twice. Its cumulative distribution function F (x), derived in Example

5.2, is reproduced below for convenience.

x

F(x)

0 1 2

1

It is clear that F (x) is a step function and accordingly, X qualifies has a discrete

random variable. Specifically, there are three points of discontinuity at x = 0, 1

and 2. The corresponding jumps are

F (0) − F (0−) = P (X = 0) = 1/4

F (1) − F (1−) = P (X = 1) = 1/2

F (2) − F (2−) = P (X = 2) = 1/4

Between consecutive points of discontinuity, the function F (x) remains constant.

◭
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Remarks:

• Discrete random variables are easily identifiable:

- Any RV X defined over a discrete (i.e. finite or countably infinite)

sample space S is necessarily discrete.

- More generally, any RVX with a discrete range RX must be discrete.

• Invoking Theorem 5.1 (e), the value of the jump in F (x) at the point xi

is given by

P (X = xi) = F (xi) − F (x−i ) > 0 (6.2)

At any other value of x ∈ R−{xi}, the function F (x) is continuous and

therefore

P (X = x) = F (x) − F (x−) = 0 (6.3)

• We refer to {xi} as the set of possible values for X. While {xi} ⊆ RX ,

the converse is not necessarily true. However, since P (X = x) = 0 for

any x ∈ RX that is not in {xi}, it can be seen that for the purpose of

computing probabilities, both sets are equivalent.

• In the sequel, we assume that RX is discrete and we identify {xi} ≡ RX .

Definition: Let X be a discrete RV. The function p : R → [0, 1] defined by

p(x) = P (X = x), for all x ∈ R (6.4)

is called the probability mass function (PMF) of X.
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Remarks:

• p(x) is sometimes called the discrete probability function.

• From (6.2) and (6.3), we immediately obtain:

p(xi) = F (xi) − F (x−i ) > 0 (6.5)

p(x) = 0 for all x /∈ RX (6.6)

• It should be clear that knowledge of the CDF F (x) is sufficient to con-

struct the PMF p(x), and vice versa. In particular

F (x) =
∑

all i

p(xi)u(x− xi)

=
∑

xi≤x
p(xi) (6.7)

where u(x) is the unit step function defined by

u(x) =







1 if x ≥ 0

0 otherwise.
(6.8)

• While both functions F (x) and p(x) convey the same information, it is

often preferable to work with p(x) in applications, as it usually simplifies

the computation of probabilities.

• Knowledge of p(x) is extremely important from the viewpoint of com-

puting probabilities of events related to RV X. Indeed, as we will shortly

explain, any probability of the type P (X ∈ D), where D ⊆ R, can be

expressed in terms of p(x).
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Example 6.2:

◮ A random experiment consists in rolling a fair die twice. Let X represent the

sum of the two numbers so obtained. Find the discrete probability function of

X, i.e. p(x).

Solution: An appropriate sample space is

S = {(i, j) ∈ N2 : 1 ≤ i, j ≤ 6}

which contains N(S) = 36 outcomes. We take the power set of S as event algebra:

F = PS. Because the die is assumed to be fair, we use an equiprobable model.

Thus, for any individual outcome (i, j) ∈ S, we have

P ({(i, j)}) =
1

N(S)
=

1

36

Let X be the random variable representing the sum of the two numbers. X is a

function from S into R, defined by

X(i, j) = i+ j, for all (i, j) ∈ S

We note that (i, j) ∈ S ⇒ 2 ≤ i+ j ≤ 12. Thus, the range of X, or equivalently,

the set of its possible values, is given by

RX = {2, 3, ..., 12}

Values of the PMF p(x) may be computed as follows:

p(2) = P (X = 2) = P ({(i, j) ∈ S : X(i, j) = i+ j = 2})
= P ({(1, 1)})
= 1/36

p(3) = P (X = 3) = P ({(i, j) ∈ S : X(i, j) = i+ j = 3})
= P ({(1, 2), (2, 1)})
= 2/36

Proceeding in this way for the other possible values of X, we obtain:

x 2 3 4 5 6 7 8 9 10 11 12

p(x) 1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

Finally, note that

p(x) = 0 if x /∈ {2, 3, . . . , 12}
◭
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Theorem 6.1: Let X be a discrete RV with range RX = {x1, x2, ...}. The

PMF of X obeys the following properties:

(a) p(x) = 0 for all x /∈ RX (6.9)

(b) p(x) ≥ 0 for all x ∈ RX (6.10)

(c)
∑

x∈RX

p(x) ≡
∑

all i

p(xi) = 1 (6.11)

Proof: Properties (a) and (b) are merely a restatement of (6.5)-(6.6). Part

(c) may be proved by combining (6.7) and Theorem 5.1 (b) as follows:

1 = lim
x→∞

F (x)

= lim
x→∞

∑

all i

p(xi)u(x− xi) =
∑

all i

p(xi) �

Remarks:

• Generally, any function p(x) satisfying properties (a)-(c) above is called

a probability mass function.

• One may view RX together with the numbers pi , p(xi) as defining a

simplified probability space, adequate for the study of RV X.

• For any real number subset D ⊆ R, the probability P (X ∈ D) can be

expressed as a sum of numbers p(xi). Specifically:

P (X ∈ D) =
∑

i :xi∈D
P (X = xi) =

∑

i :xi∈D
p(xi) (6.12)

where the sum is over all i such that xi ∈ D.

• In particular, if D ∩RX = ∅, then P (X ∈ D) = 0
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Example 6.3:

◮ A random experiment consists in flipping a fair coin until heads shows up; assume

that each flip is an independent sub-experiment. Let X represent the number of

necessary flips. Find the PMF of X and compute the probability that X is even.

◭
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6.2 Function of a random variable

Introduction:

• We often have to deal with two or more RVs that are related to each

other by simple functional relationships, or transformations.

• Here, we briefly expose the concept of a transformation from one discrete

RV, say X, to another RV, say Y .

• Special attention is given to the relationship between the PMFs of X

and Y .

Transformation of a single RV:

• Let X : S → R be a discrete RV defined on probability space (S,F , P )

and let RX denote the range of X (assumed to be discrete).

• Let h : R → R be a real-valued function. The composition Y = h ◦X is

a function from S into R, defined by

Y (s) = h(X(s)) for all s ∈ S (6.13)

• Let RY denote the range of Y . Since RX is discrete and RY = h(RX),

it follows that RY is also discrete. Thus, the function Y = h ◦X defines

a discrete RV.

• Typical examples include: Y = X2, Y = cos(X), etc.
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Theorem 6.2: Let X be a discrete RV with range RX = {x1, x2, . . .} and PMF

pX(x). Consider the discrete RV Y = h(X) with range RY = {y1, y2, . . .}
and let pY (y) = P (Y = y) denote its PMF. We have

pY (yj) =
∑

h(xi)=yj

pX(xi) (6.14)

where the summation is over all integer i such that h(xi) = yj.

Proof: For any yj ∈ RY , the event {Y = yj} may be expressed as a union of

mutually exclusive events as follows (please think...):

{Y = yj} =
⋃

h(xi)=yj

{X = xi} (6.15)

Therefore, we have

P (Y = yj) =
∑

h(xi)=yj

P (X = xi) (6.16)

which is equivalent to (6.14). �

Example 6.4:

◮ A fair die is rolled twice. Let X represent the sum of the two numbers so obtained

and define Y = |X − 7|. Find the probability mass function (PMF) of Y . ◭
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6.3 Expectation of a discrete RV

Motivation: Consider a lottery game in which the probability of winning each

one of three possible dollar prizes is:

P (Winning x dollars) = 0.25/x, x = 1, 10, 100

How much would you be willing to pay for the price of a ticket?

An answer to this question may be obtained via the relative frequency inter-

pretation of probabilities. Let X represent our gain in dollars each time we

buy a ticket. X may be viewed as a discrete RV with range RX = {1, 10, 100}
and PMF

p(x) = P (X = x) =

{

0.25/x, x = 1, 10, 100

0, otherwise

Suppose we were allowed to play the game a large number of times, say n.

For x ∈ RX , let

nx = number of times we win x dollars

out of the n trials. The arithmetic average of the observed values of the gain

X in n trials of the game can be computed as

Average gain = (1n1 + 10n10 + 100n100)/n

= 1 (n1/n) + 10 (n10/n) + 100 (n100/n)

≈ 1 p(1) + 10 p(10) + 100 p(100) (6.17)

= 1 (0.25) + 10 (0.025) + 100 (0.0025) = 0.75

where we have used the approximation p(x) ≈ nx/n.

C onclusion: we should not pay more than 75 cents for the price of a ticket.

On average, we are going to lose money if we pay more than that!
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Note how in (6.17), the average gain is expressed in terms of the PMF of

random variable X as

Average gain ≈
∑

x∈RX

x p(x) (6.18)

where the summation is over all x ∈ RX = {1, 10, 100}. This leads naturally

to the following definition.

Definition: LetX be a discrete RV with set of possible values RX = {x1, x2, ...}
and PMF p(x). The expected value of X is defined as

E(X) =
∑

x∈Rx

x p(x) =
∑

all i

xi p(xi) (6.19)

provided the series converges absolutely.

Remarks:

• E(X) is also called mean, expectation or mathematical expectation; it

is often denoted simply by µ or µX .

• Knowledge of E(X) is very useful in decision making processes (e.g.:

should you play a game or not). In fact, the solution of many engineering

problems amounts to optimizing an expected value (e.g. minimum mean

square-error design of a digital radio receiver).

• Formally, E(X) is only defined if the series (6.19) converges absolutely,

that is
∑

x∈RX
|x| p(x) <∞:

- when RX is finite, this condition is always satisfied;

- when RX is countably infinite, it may not be satisfied.

c© 2003 Benôıt Champagne Compiled September 12, 2006



6.3 Expectation of a discrete RV 146

Example 6.5:

◮ In a 6-49 lottery, players pick 6 different integers in {1, 2, ..., 49}. The lottery

commission also picks 6 of these numbers randomly as the winning combination.

A player wins the

- Grandprize of $2,400,000 if all 6 numbers match winning combination

- 2nd prize of $1600 if 5 out of 6 matching numbers

- 3rd prize of $70 if 4 out of 6 matches

What is the expected value of the amount a player can win in this game?

Solution: Let RV X denote the gain in $. X may take the following values with

corresponding probabilities:

x1 = 2.4 × 106 with p(x1) = P (X = x1) = 1/

(
49

6

)

= 7.1 × 10−8

x2 = 1600 with p(x2) =

(
6

5

)(
43

1

)

/

(
49

6

)

= 1.85 × 10−5

x3 = 70 with p(x3) =

(
6

4

)(
43

2

)

/

(
49

6

)

= 9.69 × 10−4

Using the above figures, the expected gain can be computed as

E(X) = x1p(x1) + x2p(x2) + x3p(x3) = 0.26$

In practice, this value of E(X) would be used by the lottery commission to set

the price of a ticket. ◭

c© 2003 Benôıt Champagne Compiled September 12, 2006



6.3 Expectation of a discrete RV 147

6.3.1 Properties of expectation:

In this Section, we state important properties of the expectation operator

E(.) in the form of individual Theorems. These properties in handy when

performing computations involving E(.); we shall often use and/or refer to

them. In the Theorem statements, the following is implicitly assumed

• X is a discrete RV

• RX = {x1, x2, ...} is the range of X (i.e. set of possible values)

• p(x) = P (X = x) is the probability mass function (PMF) of X.

Theorem 6.3: If X is constant with probability one, that is, if P (X = c) = 1

for some constant c, then E(X) = c.

Proof: Recall that
∑

x∈RX
p(x) = 1. Here, since p(c) = P (X = c) = 1, it

follows that p(x) = 0 if x 6= c. Then:

E(X) =
∑

x∈RX

x p(x)

= c p(c) +
∑

x∈RX ,x 6=c
x p(x) = c · 1 + 0 = c �

Theorem 6.4: Let h : R → R is be a real-valued function:

E(h(X)) =
∑

x∈RX

h(x)p(x) =
∑

all i

h(xi)p(xi) (6.20)
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Proof: Define discrete random variable Y = gh(X) and let RY = {y1, y2, ...}
denote its corresponding set of possible values. Invoking the definition of

expectation (6.19) and Theorem 6.2, we have:

E(h(X)) = E(Y )

=
∑

all j

yj pY (yj)

=
∑

all j

yj
∑

h(xi)=yj

p(xi)

=
∑

all j

∑

h(xi)=yj

h(xi) p(xi)

=
∑

all i

h(xi) p(xi) �

Why is Theorem 6.4 useful?

• Let Y = h(X). Then, from the definition of expectation:

E(h(X)) = E(Y ) =
∑

j

yj pY (yj) (6.21)

where pY (y) = P (Y = y) is the PMF of Y .

• According to Theorem 6.4, we do not need to know pY (y) explicitly to

evaluate E(h(X)). Knowledge of p(x), the PMF of X, is sufficient.

• A common mistake for students at this stage is to assume thatE(h(X)) =

h(E(X)). This is not true in general, as we will see in examples.
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Corollary 6.4: Let h1, h2, . . . , hn be real-valued functions and α1, α2, . . . , αn

be real constants:

E(
n∑

k=1

αkhk(X)) =
n∑

k=1

αkE(hk(X)) (6.22)

Proof: Applying Theorem 6.4 to the left-hand side of (6.22), we have

E(
n∑

k=1

αkhk(X)) =
∑

x∈RX

(
n∑

k=1

αkhk(x)) p(x)

=
n∑

k=1

αk
∑

x∈RX

hk(x) p(x)

=
n∑

k=1

αkE(hk(X)) �

Remarks:

• E(.) acts as a linear operator on the RVs hk(X).

• Let α and β be arbitrary real constants. As a special case of (6.22):

E(αX + β) = αE(X) + β (6.23)

Example 6.6:

◮ Equation (6.22) is typically used to break down the computation of an expectation

into simpler parts, as in

E((X + 1)3) = E(X3 + 3X2 + 3X + 1)

= E(X3) + 3E(X2) + 3E(X) + 1

E(2 cos(X) + e−X) = 2E(cos(X)) + E(e−X)

◭
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Example 6.7:

◮ Let X be a randomly selected integer from the set {0, 1, ..., N}, where N is a

given positive integer. Find the expected value of

Y = X(N −X)

Also, verify that E(Y ) 6= E(X)(N − E(X)).

Solution: In the absence of further a priori knowledge, we assume an equiprobable

model for X. Thus, its PMF is given by

p(x) = P (X = x) =

{
1

N+1
, x ∈ RX = {0, 1, ..., N}

0, otherwise.

To compute the expected value of Y , we proceed as follows:

E(X) =
N∑

x=0

xp(x) =
1

N + 1

N∑

x=0

x

=
1

N + 1

N(N + 1)

2
=
N

2

E(X2) =
N∑

x=0

x2p(x) =
1

N + 1

N∑

x=0

x2

=
1

N + 1

N(N + 1)(2N + 1)

6
=
N(2N + 1)

6

E(X(N −X)) = E(NX −X2)

= NE(X) − E(X2)

= N
N

2
− N(2N + 1)

6
=
N(N − 1)

6

Note that

E(X)(N − E(X)) =
N

2
(N − N

2
) =

N2

4
6= E(Y ) =

N(N − 1)

6

◭
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6.4 Variance of a discrete random variable

Introduction: Consider 2 discrete RVs, say X1 and X2, with PMF p1(x) and

p2(x), respectively, and identical mean, say µ = E(X1) = E(X2). Although

both X1 and X2 have the same mean, their statistical behavior around µ, as

characterized by the size and frequency of the deviation Xi−µ, may be quite

different. To illustrate this point, consider the PMF illustrated below:

x

p
1
(x)

1

p
2
(x)

x-1 3-30 0

1/2

1/4

1 2-1-2

Clearly, the likelihood that X2 be found far away from its mean µ = 0 is

larger than that for X1.

In many applications, the deviation of a RV about its mean is of great sig-

nificance. For example, in the above example,

• Suppose X1 and X2 represent the distribution of voltage measurements

across an open circuit using two different digital instruments, say I and

II, respectively.

• The measurements Xi (i = 1, 2) have a random nature due to the inher-

ent errors generated within the instruments.

• Based on the above PMF, we can affirm that instrument I is superior

to instrument II, as its measurements are less likely to deviate from the

mean value, assumed equal to the true voltage.

For the purpose of comparison, it is important to introduce a quantitative

measure of the spread of a PMF. The variance fulfills this role.
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Definition: Let X be a discrete RV with range RX = {x1, x2, ...}, PMF p(x)

and mean value E(X) = µ. The variance of X is defined as

V ar(X) = E[(X − µ)2] (6.24)

The standard deviation of X is defined as

σX =
√

V ar(X) (6.25)

Remarks:

• The variance really is a characteristic of the PMF p(x):

V ar(X) =
∑

x∈RX

(x− µ)2p(x) =
∑

i

(xi − µ)2p(xi) (6.26)

• V ar(X) measures the dispersion, or spread, of X about its mean µ.

• Difference between V ar(X) and σX :

- V ar(X) is in unit of X2 while

- σX is in unit of X.

• An alternative measure of spread is E[|X − µ|]. However, because of

the absolute values, this measures is less mathematically tractable. The

measure E[(X − µ)2] is preferred in practice.

Theorem 6.5: The variance of X satisfies:

V ar(X) = E(X2) − µ2 (6.27)
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Proof: Recall that µ = E(X). We have

V ar(X) = E((X − µ)2)

= E(X2 − 2µX + µ2)

= E(X2) − 2µE(X) + µ2 = E(X2) − µ2 � (6.28)

Remarks:

• It is often simpler to evaluate E(X2) than E((X − µ)2). Theorem 6.5

simply offers an alternative way of computing V ar(X).

• Since V ar(X) ≥ 0, it follows from Theorem 6.5 that E(X2) ≥ (E(X))2.

Theorem 6.6: V ar(X) = 0 if and only if P (X = µ) = 1

Proof: Left as an exercise to the student.

Theorem 6.7: For any real constants a and b,

V ar(aX + b) = a2 V ar(X) (6.29)

Proof: Using the definition (6.24) of the variance, we have:

V ar(aX + b) = E[(aX + b) − E(aX + b))2]

= E[(aX + b− aE(X) − b)2]

= E[a2(X − E(X))2]

= a2E[(X − E(X))2] = a2V ar(X) � (6.30)
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Remarks:

• From (6.29), we conclude that V ar(.) is not a linear operation.

• In particular, V ar(aX + b) 6= aV ar(X) + b in general

Example 6.8:

◮ Let X be a randomly selected integer from the set {−N, ...,−1, 0, 1, ..., N}. Find

the standard deviation of X. ◭
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6.5 Discrete RVs in repeated experiments

Introduction:

• In this and the next Section, we study some common discrete RVs of

interest in science and engineering.

• These RVs should be viewed as basic building blocks when developing

probability models for specific problems and applications.

• In this Section, we study discrete RVs that relate to sequences of identical

and independent random experiments, i.e. Binomial and geometric RVs.

• In the next Section, we look at the Poisson RV.

6.5.1 Bernouilli RV

Recall: A Bernouilli trial is a random experiment in which a particular event

A, that may or not occur, has been identified and assigned a probability

p , P (A), 0 ≤ p ≤ 1. (6.31)

Event A is called a success and its complement Ac is called a failure. The

number p = P (A) is called the probability of success and

q , P (Ac) = 1 − p (6.32)

is called probability of failure.
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Definition: A random variable X is called Bernouilli with parameter p if there

exists an event A with probability p = P (A) such that:

X(s) =







1, s ∈ A

0, s /∈ A.
(6.33)

where s denotes an arbitrary experimental outcome in the sample space S.

In other words, X = 1 if event A occurs, and X = 0 otherwise.

Probability mass function of X:

• X is a discrete RV with only two possible values: RX = {0, 1}.

• The probability mass function of X is given by

p(0) = P (X = 0) = P (Ac) = 1 − p = q (6.34)

p(1) = P (X = 1) = P (A) = p (6.35)

p(x) = 0 if x /∈ {0, 1} (6.36)

• Graph of p(x):

c© 2003 Benôıt Champagne Compiled September 12, 2006



6.5 Discrete RVs in repeated experiments 157

Expected value:

µ = E(X) =
1∑

i=0

i p(i)

= 0 · q + 1 · p = p (6.37)

Variance:

E(X2) =
1∑

i=0

i2 p(i)

= 02 · q + 12 · p = p (6.38)

σ2 = V ar(X) = E(X2) − µ2

= p− p2 = p (1 − p) = p q (6.39)

Remarks:

• The Bernouilli RV is one of the simplest RV that can be imagined.

• It is of limited use by itself, but extremely useful as a building block in

the development of models for repeated experiments.
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6.5.2 Binomial RV

Definition: Consider a sequence of n identical and independent Bernouilli

trials with probability of success p. The RV X defined by

X = number of successes in the n trials (6.40)

is called binomial with parameters n and p, or simply B(n, p).

Remarks:

• The notation X ∼ B(n, p) is also used.

• Each Bernouilli trial is a random experiment with sample space S and

P (A) = p for some selected event A ⊆ S (A ≡ success).

• The sample space of the product experiment, i.e. the sequence of n

Bernouilli trials, is the cartesian product Sn.

• RV X is a function from Sn → RX = {0, 1, ..., n}.

• Basic examples of Binomial RVs include:

- Number of heads in a sequence of 10 independent flips of a coin.

- Number of defective IC chips in a production sample of size n.
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Theorem 6.8: Let X be B(n, p). The PMF of X is

p(x) =

(
n

x

)

px(1 − p)n−x, x = 0, 1, ..., n (6.41)

and p(x) = 0 otherwise.

Proof: X represents the number of successes in a sequence of n Bernouilli

trials; it is a discrete RV with range RX = {0, 1, ..., n}. As an immediate

application of Theorem 4.8, we have for any x ∈ RX :

p(x) = P (X = x)

= P ({x successes in n trials})

=

(
n

x

)

px(1 − p)n−x

For any x /∈ RX , p(x) = P (X = x) = 0. �

Example 6.9:

◮ Consider an unmanned space program in which the probability of a successful

launch of a certain type of rocket has been evaluated to p = 0.975. Consider a

sequence of 50 independent launches. Find the probability that all launches are

sucessful. Find the probability of a single unsuccessful launch. ◭
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Remarks on the function p(x):

• The probability mass function (6.41) is sometimes called binomial law

or binomial distribution.

• In the special cases p = 0 or p = 1 (i.e. q = 1 − p = 0), (6.41) remains

valid provided one assumes 00 = 1.

• Typical plots of p(x):
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• In the special case p = q = 1/2, the function p(x) is symmetrical:

p(x) = p(n− x), x ∈ {0, 1, ..., n} (6.42)

• In the case 0 < p < 1, the function p(x) attains a maximum at the largest

integer less than or equal to (n+ 1)p, sometimes denoted as ⌊(n+ 1)p⌋.
To verify this, first note that

p(x)

p(x− 1)
=

(
n
x

)
px(1 − p)n−x

(
n
x−1

)
px−1(1 − p)n−x+1

=
(n+ 1)p− xp

x− xp
(6.43)

From (6.42) it follows that

x < (n+ 1)p ⇒ p(x) > p(x− 1)

x = (n+ 1)p ⇒ p(x) = p(x− 1)

x > (n+ 1)p ⇒ p(x) < p(x− 1)
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Theorem 6.9: Let X be B(n, p). Then

E(X) = np (6.44)

V ar(X) = np(1 − p) = npq (6.45)

Proof: First consider E(X):

E(X) =
n∑

x=0

x

(
n

x

)

pxqn−x

=
n∑

x=1

x
n!

x!(n− x)!
pxqn−x

=
n∑

x=1

n(n− 1)!

(x− 1)!(n− 1 − (x− 1))!
p px−1qn−1−(x−1) (6.46)

Making the change of variable y = x− 1 and m = n− 1 in (6.46), we obtain

E(X) = np
m∑

y=0

m!

y!(m− y)!
pyqm−y

= np(p+ q)m = np (6.47)

where we have made use of Theorem 2.10. The proof for the variance is left

as an exercise. �.
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6.5.3 Geometric RV

Definition: Consider a sequence of independent Bernouilli trials, each with

probability of success p. The RV X defined by

X = number of trials until first success (6.48)

is called geometric with parameter p.

Remarks:

• The set of possible values for X is the set of positive integers, that is

RX = {1, 2, . . .} = N.

• Thus, X is a discrete RV with a countably infinite set of possible values.

Theorem 6.10: Let X be geometric with parameter p. The PMF of X is

p(x) = (1 − p)x−1p, x = 1, 2, 3, ... (6.49)

and p(x) = 0 otherwise.
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Proof: Consider the following tree diagram of the underlying random ex-

periment, where letters S and F indicate success and failure, respectively:

For any x ∈ N, the event X = x is equivalent to a succession of x − 1

failures followed by a success, as represented by the outcome FF...FS. The

corresponding probability is therefore

p(x) = P (X = x) = P ({FF . . . FS}) = qx−1p (6.50)

where the independence assumption as been used in the last equality. �
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Theorem 6.11: Let X be geometric with parameter p. Then

E(X) =
1

p
(6.51)

V ar(X) =
1 − p

p2
(6.52)

Proof: We make use of the following basic relations:

∞∑

k=1

kρk =
ρ

(1 − ρ)2
,

∞∑

k=1

k2ρk =
ρ(ρ+ 1)

(1 − ρ)3
(6.53)

valid for any number ρ with |ρ| < 1. First consider E(X):

E(X) =
∞∑

x=1

x p qx−1 =
p

q

∞∑

x=1

x qx

=
p

q

q

(1 − q)2
=

1

p

The proof for the variance is left as an exercise. �.
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6.6 Poisson RV

Definition: A discrete random variable X is called Poisson with parameter

λ > 0 if its discrete probability function takes the form

p(x) = P (X = x) =
λx

x!
e−λ, x = 0, 1, 2, ... (6.54)

and p(x) = 0 otherwise.

Remarks:

• The function p(x) (6.55) is a valid PMF: p(x) ≥ 0 for all x and

∞∑

x=0

p(x) = e−λ
∞∑

x=0

λx

x!
= e−λeλ = 1 (6.55)

• Also known as the Poisson distribution, it first appeared as an approxi-

mation to the Binomial distribution (Poisson, 1837).

• It is one of the most commonly used distribution for discrete RVs. As

we will see, it is the model of choice for many practical situations.

• Typical plots of the Poisson distribution:

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

lambda = 1

x
0 5 10 15 20

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

lambda = 5

x
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6.6 Poisson RV 166

Theorem 6.12: Let X be a Poisson RV with parameter λ. Then

E(X) = λ (6.56)

V ar(X) = λ (6.57)

Proof: We leave it to the reader to first demonstrate the following identities:

∞∑

x=0

x
λx

x!
= λeλ (6.58)

∞∑

x=0

x2 λ
x

x!
= (λ2 + λ)eλ (6.59)

Using (6.58), we have for the expected value of X:

E(X) =
∞∑

x=0

x p(x) =
∞∑

x=0

x
λx

x!
e−λ = λ

To find the variance of X, first evaluate E(X2) using (6.59):

E(X2) =
∞∑

x=0

x2 λ
x

x!
e−λ = λ2 + λ (6.60)

Finally,

V ar(X) = E(X2) − λ2 = λ �
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Remarks: The Poisson distribution occurs naturally in two very important

classes of problems:

• Approximation to the binomial (presented below)

• Poisson processes (to be discussed in connection with random processes)

6.6.1 Poisson’s approximation to the binomial:

Historical perspective:

• Consider the binomial distribution with parameters n and p:

p(x) =

(
n

x

)

px(1 − p)n−x, x = 0, 1, ..., n (6.61)

• Before the advent of electronic calculators, the evaluation of the binomial

PMF for large n and small p posed a significant challenge.

• The following result, due to French mathematician Poisson (1837), pro-

vides a means for approximating a binomial PMF by the more tractable

Poisson PMF, provided certain basic requirements are satisfied.

Theorem 6.13: For a fixed value of x, consider the limit of p(x) in (6.61)

when n → ∞ and p = µ/n → 0, so that np = µ = E(X) remains constant.

We have:

lim
n→∞

p(x) =
e−µµx

x!
(6.62)
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Proof: First express the binomial PMF as follows:

p(x) =
n!

x!(n− x)!
px(1 − p)n−x

=
n(n− 1)...(n− x+ 1)

x!

(µ

n

)x (

1 − µ

n

)n−x

= (1 − 1

n
)(1 − 2

n
)...(1 − x− 1

n
)
µx

x!

(1 − µ
n)
n

(1 − µ
n)
x

(6.63)

Taking the limit as n→ ∞ and recalling (from basic calculus) that limn→∞(1−
µ
n)
n = e−µ, we obtain:

lim
n→∞

p(x) =
e−µµx

x!
�

Basic approximation and notes:

• Based on Theorem 6.13, we conclude that for n ≫ x and p ≪ 1, the

binomial PMF (6.61) may be approximated by a Poisson law with pa-

rameter λ = µ = np:

p(x) =

(
n

x

)

px(1 − p)n−x ≈ e−λλx

x!
(6.64)

• An important application of the Poisson law is indeed as an approxima-

tion of the binomial when n is large and p is small.

• Not only is the Poisson distribution easier to compute in this case, but

its use often leads to important analytical simplifications.
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• Typical examples of binomial RVs for which the Poisson approximation

is particularly adequate include the following:

- Number of persons affected by a rare disease (low p) in a large

population (large n).

- Number of bits received in error when transmitting a large binary

file over a memoryless communication channel.

- Number of misprints or typos in a document page.

Example 6.10:

◮ Consider the transmission of a binary packet of length n = 1024 bits over a noisy

channel. Assume that each bit is transmitted independently of the others, with a

probability of error of p = 10−2. Let X denote the total number of bits received

in error. Evaluate the probability of an error free packet transmission. ◭
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Problems

1. Find the CDF of a Binomial random variable and sketch it.

2. Complete the proof of Theorem 6.9. That is, show that the variance of

a B(n, p) random variable X is given by V ar(X) = npq where q = 1−p.

3. Prove the following identities, used in the proof of Theorem 6.12:

∞∑

x=0

x
λx

x!
= λeλ,

∞∑

x=0

x2 λ
x

x!
= (λ2 + λ)eλ
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Chapter 7

Continuous Random Variables

In many applications of probability, we encounter random variables whose

characteristics differ significantly from those associated to discrete RVs, as

studied in Chapter 6. Specifically, denoting such a RV by X, we find that:

• The range of X is not countable;

• There is no concentration of probability in the sense that P (X = x) = 0

for all x ∈ R;

• The CDF F (x) is smoothly increasing from 0 to 1 (i.e. no jump).

Typical examples of this include: the time interval between two random

phone calls; the measurement error when using an analog instrument.

This Chapter focusses on the study of such RVs, commonly called continuous

RVs. The following topics are covered:

• Definition and the probability density function;

• Transformation of continuous RV (Y = g(X));

• Expectation and variance;

• Continuous RVs of interest, including Gaussian, uniform, exponential,

etc.

171
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7.1 Basic concepts

Definition: LetX be a random variable defined on probability space (S,F , P ).

We say that X is continuous if its CDF is absolutely continuous. That is:

(a) F (x) is continuous everywhere, i.e. for all x ∈ R;

(b) The derivative F ′(x) exists everywhere, except possibly at a finite or

countably infinite set of points in R.

Example 7.1:

◮ Let X denote a randomly selected point from the interval [0, 1] ⊆ R. The CDF

of X is easily obtained as

F (x) =







0, x < 0

x, 0 ≤ x ≤ 1

1, x > 1

(7.1)

The graph of F (x) is shown below:

x

F(x)

0 1

1

Clearly, F (x) is a continuous function of x. Its derivative is obtained as

F ′(x) =







0, x < 0

1, 0 < x < 1

0, x > 1

(7.2)

It is defined everywhere except at the points x = 0 and x = 1. Thus, F (x) is

absolutely continuous and X is a continuous RV. ◭
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Remark: Absolute continuity implies continuity in the conventional sense.

Thus, if X is a continuous random variable, F (x) is continuous everywhere

and invoking Theorem 5.1 (e), we have that:

P (X = x) = F (x) − F (x−) = 0, all x ∈ R (7.3)

Consequently, for a continuous RV, the concept of a probability mass is mean-

ingless.

Definition: Let X be a continuous RV with CDF F (x). The function f :

R → R defined by

f(x) = F ′(x) =
dF (x)

dx
(7.4)

is called the probability density function (PDF) of X.

Remarks:

• The PDF f(x) is uniquely defined and continuous everywhere, except

at the points of discontinuity of F ′(x). In practice, we find that the

particular value assigned to f(x) at those isolated points is irrelevant.

• Knowledge of the CDF F (x) enables one to construct the associated

PDF f(x). Conversely, if f(x) is known, it is possible to recover F (x)

(see Theorem below).

Theorem 7.1:

F (x) =

∫ x

−∞
f(t) dt, for all x ∈ R. (7.5)

Proof: Invoking fundamental theorem from Calculus, it follows from (7.4)

that for any real number c, we can write:

F (x) = F (c) +

∫ x

c

f(t) dt
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Taking the limit as c→ −∞ and using Theorem 5.1 (c), we obtain the desired

result.

Remarks:

• According to (7.5), F (x) = P (X ≤ x) is equal to the area under the

graph of f(t) from t = −∞ to t = x:

t

f(t)

area = F(x)

x

• While both F (x) and f(x) convey the same information, it is often

preferable to work with the PDF in the computation of probabilities

related to RV X.

• The PDF f(x) plays a central role in the theory and application of

continuous RVs. As we will see, any probability of the type P (X ∈ A),

where A is some practical subset of real numbers, can be expressed in

terms of f(x).

Theorem 7.2: The PDF f(x) satisfies the following basic properties:

(a) Non-negativity:

f(x) ≥ 0, x ∈ R (7.6)

(b) Normalization condition:
∫ ∞

−∞
f(x) dx = 1 (7.7)
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Proof: To prove (a), note from Theorem 5.1 (a) that F (x) is a non-decreasing

function and therefore,

f(x) =
dF (x)

dx
≥ 0.

Property (b) follows from (7.5) and Theorem 5.1 (b):
∫ ∞

−∞
f(x) dx = lim

x→∞
F (x) = 1 �

Remarks:

• In the theory of probability, any function f(x) satisfying properties (a)

and (b) is called a probability density function.

• According to (7.7), the area under the graph of f(x) from x = −∞ to

∞ is equal to one.

Theorem 7.3: Let X be a continuous RV with PDF f(x). For any real

numbers a ≤ b, we have:

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx (7.8)

Proof: Since P (X = a) = 0, we have P (a ≤ X ≤ b) = P (a < X ≤ b). Now,

using (5.19) and (7.5), we find

P (a < X ≤ b) = F (b) − F (a)

=

∫ b

−∞
f(x) dx−

∫ a

−∞
f(x) dx =

∫ b

a

f(x) dx �

c© 2003 Benôıt Champagne Compiled September 12, 2006



7.1 Basic concepts 176

Remarks:

• Since P (X = a) = P (X = b) = 0, it should be clear that the formula

(7.8) can also be used to compute

P (a < X ≤ b) = P (a ≤ X ≤ b)

= P (a ≤ X < b) = P (a < X < b)

That is, it does not matter whether or not the end-points a and b are

taken into account.

• According to (7.8), the probability that a ≤ X ≤ b is equal to the area

under the graph of f(x) over the interval [a, b].

x

f(x)

a b

Area = P(a<X<b)

Example 7.2:

◮ Example: Let X be a continuous RV with PDF

f(x) =

{

c e−x, 0 ≤ x

0, x < 0.
(7.9)

(a) Determine the constant c and sketch f(x).

(b) Determine and sketch F (x).

(c) Compute P (−1 ≤ X ≤ 1).
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Solution: The graph of f(x) is illustrated below:

x

)(xf

c

0

xce

area = 1

(a) To find the constant c, we simply require that the area under the graph of

f(x) be equal to 1:

1 =

∫ ∞

−∞

f(x) dx = c

∫ ∞

0

e−x dx

= c (−e−x)
∣
∣
∞

0
= c

(b) The CDF F (x) is obtained by applying formula (7.5)

F (x) = P (X ≤ x) =

∫ x

−∞

f(t) dt

We must consider two cases:

x < 0 ⇒ F (x) =

∫ x

−∞

0 dt = 0

x ≥ 0 ⇒ F (x) =

∫ x

0

e−t dt = 1 − e−x

(c) Finally, we have

P (−1 ≤ X ≤ 1) = F (1) − F (−1−) = 1 − e−1

◭
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Interpretation of the PDF:

• By itself, the PDF f(x) is not a probability, and should not be identified

with P (X = x), which is 0 for all x ∈ R.

• A proper interpretation of f(x) can be developed as follows. For ǫ a

small, positive number, we have

P (|X − x| < ǫ) = P (x− ǫ < X < x+ ǫ)

=

∫ x+ǫ

x−ǫ
f(t) dt

≈ 2ǫf(x) (7.10)

or equivalently,

f(x) ≈ P (|X − x| < ǫ)

2ǫ
(7.11)

• Equation (7.11) explicitly shows f(x) as a measure of the local proba-

bility “density” at the point x. In fact, (7.11) becomes an identity in

the limit ǫ→ 0.

• Alternatively, we may say that f(x) is proportional to the likelihood

that X be found in a small neighborhood (of fixed size 2ǫ) around the

point x.

• Thus, if f(x1) > f(x2) for some x1 > x2, it is more likely that X falls

within x1 ± ǫ than within x2 ± ǫ (provided ǫ is small).
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Theorem 7.4: For any real number subset A ∈ BR, we have

P (X ∈ A) =

∫

A

f(x) dx (7.12)

Remarks:

• Recall that BR is the Borel field of R: i.e. the set of all subsets of R that

can be constructed from intervals via a countable number of basic set

operations, i.e. union, intersection and complement (see Section 3.4).

• From a practical viewpoint, BR contains all subsets A ⊆ R that may be

of interest in engineering applications.

• The Theorem simply states that for any such subset A, the probability

that X ∈ A can be obtained as the area under the graph of f(x) over

the region A.

• The proof of the theorem is beyond the scope of this course.
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7.2 PDF of a transformed RV

Problem statement and overview:

• Suppose X is a continuous RV with known PDF f(x)

• Let Y = h(X) where h : R → R is a real-valued function.

• Then, what is the PDF of the transformed RV Y = h(X)?

• In this section, we present two methods for evaluating the PDF Y :

- Method of distribution (Section 7.2.1)

- Method of transformation (Section 7.2.2)
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7.2.1 Method of distributions

Notations:

• X is continuous RV with known PDF f(x).

• Y = h(X), where h : R → R.

• g(y) and G(y) denote the PDF and CDF of Y , respectively.

Principle of the method:

(1) For every y ∈ R, find a real number subset Ay such that

Y ≤ y ⇐⇒ X ∈ Ay (7.13)

(2) Find the CDF of Y by integrating f(x) over Ay:

G(y) = P (Y ≤ y)

= P (X ∈ Ay)

=

∫

Ay

f(x) dx (7.14)

(3) Find the PDF of Y by differentiating G(y):

g(y) =
d

dy
G(y) = G′(y) (7.15)
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Remarks:

• In many problems, we do not need to evaluate the integral in step (2)

explicitly, because of the subsequent differentiation in step (3)

• In this respect, the following formula, known as Leibnitz’s rule, is ex-

tremely useful in implementing step 3:

d

dy

∫ β(y)

α(y)

f(x) dx = f(β(y))β′(y) − f(α(y))α′(y) (7.16)

Example 7.3:

◮ Let X be a continuous RV with PDF:

f(x) =

{
1, −1

2
≤ x ≤ 1

2

0, otherwise
(7.17)

Find the PDF of Y = aX + b (assume a > 0).

Solution: We first note that

Y ≤ y ⇐⇒ aX + b ≤ y ⇐⇒ X ≤ y − b

a

Therefore, the CDF of Y can be expressed in terms of the CDF of X as follows:

G(y) = P (Y ≤ y)

= P (X ≤ y − b

a
) = F (

y − b

a
)

Finally, to obtain the PDF of Y , we simply take the derivative with respect to y:

g(y) = G′(y)

=
d

dy
F (
y − b

a
)

=
1

a
F ′(

y − b

a
) =

1

a
f(
y − b

a
) (7.18)

where the chain rule of derivation has been used on the last line. The relationship

between f(x) and g(y) is illustrated below. Actually, results (7.18) is general and

applies to any PDF f(x) (i.e. not only the one in (7.17)). ◭
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7.2.2 Method of transformations

Introduction:

• This method may be viewed as a generalization of the operations in-

volved in the method of distribution.

• This generalization takes the form of a theorem (or formula), for com-

puting g(y) directly from the knowledge of f(x) and the transformation

h(.), without the need to explicitly compute G(y).

• Thus, the method of transformation simply amounts to the direct appli-

cation of the theorem below to compute g(y).

Theorem 7.5: Let X be a continuous RV with PDF f(x). Let Y = h(X)

where h is a differentiable real-valued function. For every y ∈ R, let xi ≡ xi(y)

(i = 1, 2, ...) denote the distinct real roots of the equation y = h(x). Then

g(y) =
∑

i

f(xi)

∣
∣
∣
∣

dxi
dy

∣
∣
∣
∣

(7.19)

Proof: Consider the graph of Y = h(X):

X

Y

x
1

x
2

x
3

y

Y=h(X)
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For an arbitrary value of y, let x1, x2,... denote the distinct real roots of the

equation y = h(x). From the graph of Y = h(X), we note that

G(y) = P (Y ≤ y)

= P (X ≤ x1) + P (x2 ≤ X ≤ x3) + ...

= F (x1) − F (x2) + F (x3) + ... (7.20)

We also note that the roots xi are functions of y, i.e. xi = xi(y), with

dx1

dy
> 0,

dx2

dy
< 0,

dx3

dy
> 0, ... (7.21)

Taking the derivative of G(y) and using this information, we have

g(y) =
dG(y)

dy

= F ′(x1)
dx1

dy
− F ′(x2)

dx2

dy
+ F ′(x3)

dx3

dy
− ...

= f(x1)

∣
∣
∣
∣

dx1

dy

∣
∣
∣
∣
+ f(x2)

∣
∣
∣
∣

dx2

dy

∣
∣
∣
∣
+ f(x3)

∣
∣
∣
∣

dx3

dy

∣
∣
∣
∣
+ ... (7.22)

Remarks:

• To apply the theorem, we must first find the distinct real roots of the

equation y = h(x) as a function of y, denoted xi = xi(y) (i = 1, 2, . . .).

The number of such roots xi may depend on the specific value of y.

• Once the roots are known, we must compute the derivatives dxi

dy (i =

1, 2, . . .) and use them in (7.19) to evaluate the desired PDF g(y).

• If the equation y = h(x) has no real root for a given value of y, then

formula (7.19) is interpreted as meaning g(y) = 0.
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Example 7.4:

◮ Let Y = X2 where X is a continuous RV with PDF

f(x) =
1

π(1 + x2)
, x ∈ R

Find the PDF of Y using the method of transformation.

Solution: In this type of problem, we find it useful to sketch the graph of the

transformation Y = h(X) = X2:

The number of roots of the equation y = h(x) = x2 depends on the value of y:

• In the case y < 0, the equation y = x2 has no real solution, and therefore

g(y) = 0, y < 0

• In the case y > 0, the equation y = x2 has two roots, namely:

x1 =
√
y ⇒ dx1

dy
=

1

2
√
y

x2 = −√
y ⇒ dx2

dy
= − 1

2
√
y

At this point, a direct application of Theorem 7.4 gives

g(y) = f(x1)

∣
∣
∣
∣

dx1

dy

∣
∣
∣
∣
+ f(x2)

∣
∣
∣
∣

dx2

dy

∣
∣
∣
∣

=
1

π(1 + x2
1)

· 1

2
√
y

+
1

π(1 + x2
2)

· 1

2
√
y

=
1

π
√
y(1 + y)

, y > 0

◭
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7.3 Expectation and variance

Introduction:

• Recall the definition of the expectation of a discrete RV X, with set of

possible values {x1, x2, ...} and PMF p(x) = P (X = x):

E(X) ,
∑

i

xi p(xi) (7.23)

• This definition cannot be applied to a continuous RV, because in this

latter case:

- the set of possible values is not discrete and

- P (X = x) = 0 for all x ∈ R.

• In this Section:

- We present an alternate definition of expectation that is suitable for

continuous RVs and study its properties.

- We also extend the concept of variance to continuous RVs.
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7.3.1 Definition of Expectation for continuous RVs

Definition: Let X be a continuous RV with PDF f(x). Provided the integral
∫∞
−∞ |x|f(x)dx is finite, the expected value of X is defined as

E(X) =

∫ ∞

−∞
x f(x) dx. (7.24)

Remarks:

• E(X) is also called mean or expectation; it is often denoted by µ or µx

• The condition
∫∞
−∞ |x|f(x)dx < ∞ is imposed for mathematical conve-

nience. One can find continuous RVs for which this integral diverges; in

this case, we say that E(X) does not exist.

• Interpretations of E(X):

- Relative frequency: Consider N independent observations of the RV

X. E(X) may be interpreted as the limiting value of the arithmetic

average of these measurements when N goes to infinity.

- Circuit application: Let X represent the measured voltage across a

resistor in a DC circuit. Due to noise, interference and measurement

error, this voltage is subject to small random fluctuations. Here,

E(X) may be interpreted as the true DC value of the voltage.
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Connection between the two definitions:

• Let us investigate the connection between (7.24) and (7.23).

• For simplicity, assume that f(x) has finite support [a, b], i.e. f(x) = 0 if

x /∈ [a, b].

• Then, from the definition of the Riemann integral, (7.24) gives

E(X) =

∫ b

a

x f(x) dx

= lim
N→∞

N∑

i=1

xi f(xi) ∆x (7.25)

where ∆x = (b− a)/N and xi = a+ (i− 1
2)∆x.

• For ∆x small, f(xi)∆x ≈ P (|X − xi| ≤ ∆x/2) is the probability that X

lies in a small neighborhood of size ∆x centered at xi. Thus, we have

E(X) ≈
N∑

i=1

xi P (|X − xi| ≤ ∆x/2) (7.26)

which is in agreement with (7.23).
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Example 7.5:

◮ Let X be a continuous RV with PDF

f(x) =

{
1

b−a
a ≤ x ≤ b

0 otherwise.
(7.27)

for some real numbers a < b. The expected value of X is computed as follows:

E(X) =

∫ ∞

−∞

x f(x) dx =
1

b− a

∫ b

a

x dx

=
1

b− a

[
x2

2

]b

a

=
(b2 − a2)

2(b− a)
=
a+ b

2
(7.28)

Thus, E(X) is equal to the midpoint of the interval [a, b]. ◭

Example 7.6:

◮ Let X be a continuous RV with PDF

f(x) =

{
2

π
1

1+x2 x ≥ 0

0 x < 0.
(7.29)

Here, we find

E(X) =

∫ ∞

−∞

x f(x) dx

=
1

π

∫ ∞

0

2x

1 + x2
dx

=
1

π
ln(1 + x2)|∞0 = ∞ (7.30)

Thus, E(X) does not exist. ◭
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7.3.2 Properties of expectation

Theorem 7.6: Suppose that the PFD f(x) is symmetric with respect to some

real number a, i.e. f(a− x) = f(a+ x) for all x ∈ R. Then

E(X) = a. (7.31)

Remarks:

• The proof of the theorem amounts to a manipulation of the integral in

(7.24). This is left as an exercise.

• An illustration of this theorem is given by Example 7.5, where f(x) is

symmetric with respect to the midpoint (a+ b)/2.

Theorem 7.7: Let h : R → R be a real-valued function:

E(h(X)) =

∫ ∞

−∞
h(x)f(x) dx (7.32)

Remarks:

• The proof of the theorem is more involved than in the discrete case. The

student is referred to the textbook for additional details.

• Importance of the theorem:

- Let Y = h(X). From the definition of the expectation, we have

E(h(X)) = E(Y ) =
∫
y g(y) dy, where g(y) denotes the PDF of Y .

- According to Theorem 7.7, g(y) is not explicitly needed to compute

E(h(X)); knowledge of f(x) is sufficient.
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Example 7.7:

◮ The length X of the side of a square is a RV with PDF

f(x) =

{

1, 0 ≤ x ≤ 1

0, otherwise.
(7.33)

Find the expected value of the square’s area. ◭

Corollary 7.7: Let h1, h2,...,hn be real-valued functions and let α1, α2,...,αn

be real numbers. Then

E(
n∑

k=1

αkhk(X)) =
n∑

k=1

αkE(hk(X)) (7.34)

Remarks:

• The proof is similar to that of Corollaries 6.4, with
∑

and p(x) being

replaced by
∫

and f(x)dx, respectively.

• According to Corollary 7.7, the expectation E(.) acts as a linear opera-

tion on its RV arguments hk(X).

• As a special case, we note that for any real numbers α and β,

E(αX + β) = αE(X) + β (7.35)

Example 7.8:

◮ Let X be a random angle with PDF

f(x) =

{
1

2π
, −π ≤ x ≤ π

0, otherwise.
(7.36)

... ◭
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7.3.3 Variance of a continuous RV

Definition: Let X be a continuous RV with expectation E(X) = µ and PDF

f(x). The variance and standard deviation of X are respectively defined as

V ar(X) , E((X − µ)2) =

∫ ∞

−∞
(x− µ)2f(x)dx (7.37)

σX ,
√

V ar(X) (7.38)

Remarks:

• From (7.367), it should be clear that V ar(X) ≥ 0. In fact, if X is a

continuous RV, then V ar(X) > 0 (always).

• V ar(X) (or equivalently σX), measures the spread of the PDF f(x)

about its mean µ.

• This is illustrated in the figure below where V ar(X1) > V ar(X2):

x

f
1
(x)

f
2
(x)

1
µ

2
µ

Theorem 7.8: The following relations hold, where a and b are arbitrary real

numbers:

V ar(X) = E(X2) − µ2 (7.39)

V ar(aX + b) = a2V ar(X) (7.40)
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Remarks:

• The proofs are identical to those of Theorem 6.5 and 6.7.

• In terms of the standard deviation, (7.40) is equivalent to

σaX+b = |a|σX (7.41)

• Equation (7.39) is particularly useful when it is easier to compute E(X2)

than E((X − µ)2).

Example 7.9:

◮ Let X be a continuous RV with PDF

f(x) =

{
1

b−a
a ≤ x ≤ b

0 otherwise.
(7.42)

for some real numbers a < b. Find the variance of X

Solution: We have

V ar(X) =

∫ ∞

−∞

(x− µ)2f(x) dx

=
1

b− a

∫ b

a

(x− µ)2 dx

=
1

b− a

[
(x− µ)3

3

]b

a

(7.43)

Substituting µ = (a+ b)/2 in (7.43), we finally obtain

V ar(X) =
1

3(b− a)

[
(b− a)3

8
− (a− b)3

8

]

=
(b− a)2

12
(7.44)

◭
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7.4 The normal RV

In this and the next Section, we look at special continuous random variables

of interest. These appear frequently in the application of probability the-

ory. They may be used directly, or as basic building blocks to derive more

advanced probabilistic models.

This Section is devoted to the study of the normal random variable, which

is possibly the most important one. In the following Section, we shall study

other RVs of interest, including uniform, exponential, Gamma and Rayleigh.

7.4.1 The standard normal

Definition: A continuous RV X is called standard normal if its PDF takes

the special form

φ(x) =
1√
2π
e−x

2/2, all x ∈ R (7.45)

Remarks:

• The use of the special notation φ(x) (instead of f(x)) is motivated by

the importance of the PDF in (7.45), also called standard normal PDF.

• The following properties of φ(x) (7.45) may be verified easily:

- Symmetry about x = 0:

φ(−x) = φ(x) (7.46)

- Absolute maximum at x = 0:

φ(x) ≤ φ(0) =
1√
2π

(7.47)
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- Inflection points at x = ±1:

φ′′(−1) = φ′′(1) = 0 (7.48)

- Asymptotic behavior:

lim
x→±∞

φ(x) = 0 (7.49)

• The graph of the standard normal PDF is illustrated below. It is char-

acterized by a bell shape, consistent with basic properties (7.46)-(7.49).

1-1 0

4.0)0( ≅φ

0)1('' =±φ

0)( =±∞φ

)(xφ

x

• Finally, it can be verified that the area under the graph of φ(x) is equal

to one, that is:
∫ ∞

−∞
φ(x)dx =

1√
2π

∫ ∞

−∞
e−x

2/2dx = 1 (7.50)

Cumulative distribution function: The CDF of the standard normal, denoted

Φ(x), is given by

Φ(x) = P (X ≤ x) =
1√
2π

∫ x

−∞
e−t

2/2dt (7.51)

It is equal to the area under the graph of the standard normal PDF φ(t)

(7.45) to the left of the point t = x.
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Remarks:

• Again, the use of a special notation for the CDF (i.e. Φ(x) instead of

F (x)) is motivated by the central role it plays in probability theory.

• Due to the symmetry of the standard normal PDF φ(t) about the origin

t = 0, it follows that for any x ∈ R,

P (X ≤ −x) = P (X ≥ x)

= 1 − P (X < x) = 1 − P (X ≤ x)

or equivalently,

Φ(−x) = 1 − Φ(x) (7.52)

Setting x = 0 in (7.52), we deduce that Φ(0) = 1/2.

• The graph of Φ(x) is illustrated below:

0 x

)(xΦ

1-1

1/2

1

• Unfortunately, no closed form expression exists for the CDF Φ(x) in

(7.51); that is, the function e−x
2/2 has no simple anti-derivative. Thus,

the evaluation of Φ(x) requires the use of numerical integration or other

kind of approximations.

• In practice, two simple approaches can be used for evaluating of Φ(x):

- Use of a Table of values of Φ(x).

- Use of scientific calculator and/or computer software.
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Use of tables:

• Table of values of the function Φ(x) are available from many sources.

Such a simplified Table is presented below:

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

• These tables usually list values of Φ(x) for non-negative x only. For

example, from the above table, we read:

Φ(0.75) = 0.7734

• Values of Φ(x) for x < 0 can be obtained from the relation (7.52). For

example:

Φ(−0.75) = 1 − Φ(0.75) = 0.2266
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Use of calculator: error functions

• Nowadays, many scientific calculators and computer softwares are avail-

able for the efficient computation of Φ(x), or closely related functions.

• In particular, we mention the error function:

erf(x) ,
2√
π

∫ x

0

e−t
2

dt (7.53)

and the complementary error function:

erfc(x) ,
2√
π

∫ ∞

x

e−t
2

dt

= 1 − erf(x) (7.54)

• The standard normal CDF Φ(x) can be expressed in terms of both types

of error functions as follows:

Φ(x) = 1 − 1

2
erfc(

x√
2
) (7.55)

=
1

2
+

1

2
erf(

x√
2
) (7.56)
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Probability calculations:

• Let X be a standard normal RV. For any practical real number subset,

say A ⊆ R, the probability P (X ∈ A) can be expressed as a linear

function of values of Φ(x).

• In particular, some frequently occurring events and their probability in

terms of Φ(x) are listed below, where it is assumed that x ≥ 0.

Event Probability

X ≤ x Φ(x)

X ≤ −x 1 − Φ(x)

|X| ≤ x 2 Φ(x) − 1

|X| ≥ x 2 (1 − Φ(x))

Example 7.10:

◮ ◭
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Theorem 7.9 Let X be a standard normal RV. Then

E(X) = 0 (7.57)

V ar(X) = 1 (7.58)

Proof: Since the standard normal PDF φ(x) (7.45) is symmetric about x = 0,

it follows immediately from Theorem 7.56 that E(X) = 0. For the variance,

note from (7.45) that

φ′(x) =
−x√
2π

e−x
2/2 = −xφ(x) (7.59)

φ′′(x) = x2φ(x) − φ(x) (7.60)

Thus, using (6.74), we have

V ar(X) =

∫ ∞

−∞
x2φ(x) dx

=

∫ ∞

−∞
φ(x) dx+

∫ ∞

−∞
φ′′(x) dx

= 1 + φ′(x)|∞−∞

= 1 (7.61)

since φ′(±∞) = 0. �
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7.4.2 The normal RV

Definition: A continuous RV X is called normal (or Gaussian) with parame-

ters µ and σ, or equivalently X ∼ N(µ, σ2), if its PDF is given by

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

, x ∈ R (7.62)

where µ and σ are real numbers and σ > 0.

Remarks:

• We also say that X is normally distributed.

• Note the relationship between the PDF f(x) (7.62) and the standard

normal PDF φ(x) (7.45):

f(x) =
1

σ
φ(
x− µ

σ
)

• In the special case µ = 0 and σ = 1, f(x) = φ(x). Thus, the notation

N(0, 1) is synonymous of a standard normal distribution.

• The effects of the parameters µ and σ in (7.62) are as follows:

- µ is a translational parameter (µ > 0 ⇒ shift to the right)

- σ is a scaling parameter (σ > 1 ⇒ dilation)

• The following properties of f(x) (7.62) may be verified easily:

- Symmetry about x = µ: f(µ− x) = f(µ+ x)

- Absolute maximum at x = µ with f(µ) = 1√
2πσ

,

- Inflection points at µ± σ: f ′′(µ± σ) = 0
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• The graph of the normal PDF f(x) (7.62) is shown below. It is charac-

terized by a bell shape centered at x = µ with inflection points at µ±σ.

x

)(xf

σπ2/1

µ σµ +σµ −

• It can be verified that the PDF (7.62) is properly normalized. Using the

change of variable y = (x− µ)/σ, dy = dx/σ, we have:

1√
2πσ

∫ ∞

−∞
e−(x−µ)2/2σ2

dx =
1√
2π

∫ ∞

−∞
e−y

2/2dy = 1 (7.63)

where the last equality follows from (7.50).

Cumulative distribution function: The CDF of a normal random variable

X ∼ N(µ, σ2) is given by

F (x) , P (X ≤ x) =
1√
2πσ

∫ x

−∞
e−(t−µ)2/2σ2

dt (7.64)

Remarks:

• While no closed-form expression exists for the integral (7.64), F (x) can

be expressed in terms of the standard normal CDF Φ(x) in (7.51).

• Indeed, making the change of variable y = (t − µ)/σ, dy = dt/σ, in

(7.64), we obtain:

F (x) =
1√
2π

∫ (x−µ)/σ

−∞
e−y

2/2 dy = Φ(
x− µ

σ
) (7.65)
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• Thus, any table or computer program available for the evaluation of

Φ(x) may also be used to compute F (x).

Theorem 7.10 Let X ∼ N(µ, σ2). Then

E(X) = µ, V ar(X) = σ2 (7.66)

Proof: Since f(x) (7.62) is symmetric about x = µ, it follows from Theorem

7.6 that E(X) = µ. For the variance, we have

V ar(X) =
1√
2πσ

∫ ∞

−∞
(x− µ)2e−(x−µ)2/2σ2

dx

= σ2 1√
2π

∫ ∞

−∞
y2e−y

2/2dy

= σ2

∫ ∞

−∞
y2φ(y)dy

= σ2 (7.67)

where the second equality follows from the change of variable y = (x−µ)/σ,

dy = dx/σ, and the last equality follows from (7.61). �

Theorem 7.11: Let X ∼ N(µ, σ2). Then the RV

Z =
X − µ

σ
(7.68)

is a standard normal RV, that is Z ∼ N(0, 1).

c© 2003 Benôıt Champagne Compiled September 12, 2006



7.4 The normal RV 204

Proof: The proof is an application of the method of transformation in Section

7.2.2. Let f(x) and g(z) denote the PDFs of X and Z, respectively, with f(x)

given by (7.62). The equation z = (x−µ)/σ has a single root, i.e. x = σz+µ,

with derivative dx/dz = σ. Therefore, using Theorem 7.5, we obtain

g(z) = f(x)

∣
∣
∣
∣

dx

dz

∣
∣
∣
∣
= σf(σz + µ)

= σ
1√
2πσ

e−[(σz+µ)−µ]2/2σ2

=
1√
2π
e−z

2/2 = φ(x)

which shows that Z is a standard normal RV. �

Probability computations for the normal RV:

• Let X ∼ N(µ, σ2) and suppose we want to compute P (X ∈ A), for some

A ⊆ R.

• According to Theorem 7.10, RV Z = (X − µ)/σ is a standard normal.

• Thus, to compute P (X ∈ A), we may proceed as follows:

1. Find an equivalent subset B ⊆ R such that:

X ∈ A⇐⇒ Z ∈ B

2. Compute P (X ∈ A) = P (Z ∈ B) using techniques available for the

standard normal (i.e. tables, calculator, etc.)

Example 7.11:

◮ Let X ∼ N(µ, σ) with µ = 65 and σ = 15. Find the probability that X ≥ 80. ◭
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Special cases of interest:

• Cumulative distribution function of X:

P (X ≤ x) = P (
X − µ

σ
≤ x− µ

σ
)

= P (Z ≤ x′)

= Φ(x′) (7.69)

where x′ , (x− µ)/σ is a “standardized” value of x.

• Probability over interval:

P (a ≤ X ≤ b) = P (
a− µ

σ
≤ X − µ

σ
≤ b− µ

σ
)

= P (a′ ≤ Z ≤ b′)

= Φ(b′) − Φ(a′) (7.70)

where a′ = (a− µ)/σ and b′ = (b− µ)/σ.

Example 7.12:

◮ The value X of a certain type of resistors is N(µ, σ2) with µ = 10Ω and σ = 0.2Ω.

If we buy 100 such resistors, what is the probability that |X − 10Ω| ≤ 0.4Ω for

all resistors?

Solution: ◭
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7.5 Other continuous RVs

We present below several continuous RVs of interest. Following a common

trend, we shall often refer to these RV models as distributions.

7.5.1 Uniform RV

Definition: A continuous RV X is called uniform over the interval (a, b), or

equivalently X ∼ U(a, b), where a < b are real numbers, if its PDF

f(x) =







1

b− a
, a < x < b,

0, otherwise.
(7.71)

Remarks:

• Graph of the PDF f(x):

x

f(x)

ba

1/(b-a)

area = 1

• The values of f(x) at x = a and x = b are irrelevant.

• Consider sub-interval A = (α, β), where a ≤ α < β ≤ b:

P (X ∈ A) =

∫ β

α

f(x) dx =
β − α

b− a
=

length of (α, β)

length of (a, b)
(7.72)

• The uniform RV is thus equivalent to earlier concept of random selection

of a point from an interval (see Section 3.4.1)
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Cumulative distribution function (CDF): Recall the definition of the CDF:

F (x) , P (X ≤ x) =

∫ x

−∞
f(t) dt (7.73)

There are 3 cases to consider in the evaluation of F (x): if x < a, then f(t) = 0

in (7.73) and F (x) = 0; if a ≤ x ≤ b, then F (x) =
∫ x

a
1
b−a dt = x−a

b−a ; finally, if

if x > b, then F (x) =
∫ b

a f(t) dt = 1. We can summarize the results as

F (x) =







0 x ≤ a,
x− a

b− a
a ≤ x ≤ b

1 x ≥ b

(7.74)

The graph of F (x) is illustrated below:

x

F(x)

ba

1

slope: F'(x) = f(x) = 1/(b-a)

Theorem 7.12: Let X ∼ U(a, b). Then

µ = E(X) =
a+ b

2
(7.75)

σ2 = V ar(X) =
(b− a)2

12
(7.76)

Proof: Equation (7.75) is derived in Example 7.5 while (7.76) is derived in

Example 7.9. �
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7.5.2 The exponential RV

Definition: A continuous RV X is called exponential with parameter λ > 0

if its PDF is given by

f(x) =







λe−λx, x > 0

0, x < 0
(7.77)

Features of f(x):

• The value of f(x) at x = 0 is irrelevant.

• f(x) is properly normalized:
∫ ∞

0

λe−λxdx =
[
−e−λx

]∞
0

= (0 + 1) = 1 (7.78)

• Graph of f(x):

x

)(xf

λ

0

xe λ
λ

−

area = 1
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Cumulative distribution function: We need to evaluate the integral

F (x) = P (X ≤ x) =

∫ x

−∞
f(t) dt (7.79)

When x ≤ 0, it follows from (7.77) that F (x) = 0; When x > 0, we have

F (x) =
∫ x

0 λe
−λxdx = 1 − e−λx. Therefore:

F (x) =







1 − e−λx, x > 0

0, x ≤ 0
(7.80)

The graph of F (x) is shown below

Theorem 7.13: Let X be exponential with parameter λ > 0:

E(X) =
1

λ
, V ar(X) =

1

λ2
(7.81)

Proof: Left as an exercise to the student (use integration by parts). �

c© 2003 Benôıt Champagne Compiled September 12, 2006



7.5 Other continuous RVs 210

7.5.3 Laplacian RV

Definition: We say that continuous RV X is Laplacian with parameters α > 0

if its PDF takes the form

f(x) =
α

2
e−α|x|, x ∈ R (7.82)

Remarks: The Laplacian PDF (7.82) finds application in speech signal process-

ing where it is used to model the random distribution of speech signal am-

plitudes.

Theorem 7.14: Let X be Laplacian with parameter α:

E(X) = 0, V ar(X) =
2

α2
(7.83)

7.5.4 Rayleigh RV

Definition: We say that continuous RV X is Rayleigh with parameter β > 0

if its PDF takes the form

f(x) =







x
β2e

−x2/2β2

, x > 0

0, x < 0
(7.84)

Remarks: The Rayleigh distribution is used to model the statistics of signals

transmitted through radio channels, as in e.g. mobile radio applications.

Theorem 7.15: Let X be Rayleigh with parameter σ:

E(X) = β
√

π/2, V ar(X) = (2 − π/2)β2 (7.85)
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7.5.5 Gamma RV

Definition: We say that continuous RV X is Gamma with parameters β > 0

and λ > 0 if its PDF takes the form

f(x) =







λe−λx(λx)β−1

Γ(β) , x > 0

0, x < 0
(7.86)

where

Γ(β) ,

∫ ∞

0

xβ−1e−xdx (7.87)

is the so-called Gamma function.

Remarks:

• This is an example of a family of PDFs characterized by two parameters.

• Gamma RVs find applications in e.g. queueing theory and reliability

analysis.

• Note that in the special case β = 1, the Gamma PDF (7.86) reduces to

the exponential PDF (7.77).

Theorem 7.16: Let X be Gamma with parameter β and λ:

E(X) =
β

λ
, V ar(X) =

β

λ2
(7.88)
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Problems

1. Provide a proof of Theorem 7.5.

2. Proove equation (7.50). (Hint: define I =
∫∞
−∞ φ(x)dx and evaluate I2,

using polar coordinates.)

c© 2003 Benôıt Champagne Compiled September 12, 2006



Chapter 8

Mixed RVs and moments

Introduction

• In the previous chapters, we defined and investigated the properties of

discrete and continuous RVs.

• In applications, we often encounter RVs that are neither discrete nor

continuous. Such RVs are generally called mixed.

• In this chapter:

- We define the concept of a mixed RV.

- We introduce a unifying notations suitable for all kinds of RVs.

- Within this unifying framework, we study the concepts of moments

and moment generating functions .
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8.1 Mixed RVs

Definition: We say that RV X is of a mixed type if its CDF can be expressed

in the form

F (x) = αFd(x) + βFc(x) (8.1)

where Fd(x) is a discrete CDF, Fc(x) is a continuous CDF and α and β are

non-negative real numbers such that α+ β = 1.

Remarks:

• In (8.1), Fd(x) must be a step function (see Section 6.1) and Fd(x) must

be absolutely continuous (see Section 7.1)

• It is not difficult to verify that F (x) defined as above is a valid CDF,

i.e. it satisfies properties (a)-(d) in Theorem 5.1.

• Discrete and continuous RVs are included as special cases of mixed RVs

with the choice α = 1 and α = 0, respectively.
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Example 8.1:

◮ Let RV X denote the waiting time of a student at a registration desk. Assume

that X = 0 if a clerk is available, and X is exponential with parameter λ if all

the clerks are busy. Let p denote the probability of a clerk being available. Find

the CDF of X and show that X is a mixed RV.

Solution: We have

F (x) = P (X ≤ x)

= P (X ≤ x|C)P (C) + P (X ≤ x|Cc)P (Cc)

where C denotes the event that a clerk is available. Recall the definition of the

unit step function:

u(x) =

{

1, x ≥ 0

0, x < 0
(8.2)

Given a clerk is available, the waiting time is 0 and we have:

P (X ≤ x|C) = u(x)

Given a clerk is not available, X is exponential and we have:

P (X ≤ x|Cc) = (1 − e−λx)u(x)

Finally, we obtain

F (x) = pu(x) + (1 − p)(1 − e−λx)u(x)

We note that X is a mixed RV: its CDF can be expressed in the form (8.1) with

α = p Fd(x) = u(x)

β = 1 − p Fc(x) = (1 − e−λx)u(x)

◭
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Definition: Let X be a mixed random variable with CDF F (x). The PDF of

X is defined as

f(x) = F ′(x) =
dF (x)

dx
(8.3)

Remarks:

• Clearly, one should exercise care in the use of above definition since for

mixed RVs, the CDF F (x) will exhibit discontinuities in its graph.

• At the points of discontinuity of F (x), the derivative in (7.6) does not

exist in the conventional sense and the the PDF f(x) (8.3) will contain

singularities.

• However, (8.3) remains a valid operation if we extend the class of per-

missible PDFs f(x) to include generalized functions.

Derivative of unit step function:

• The derivative of the unit step function is a generalized function called

the unit impulse, and denoted

δ(x) =
du(x)

dx
(8.4)

• It may be viewed as an infinitely narrow pulse with area of one:

δ(x) = 0, for all x 6= 0 (8.5)
∫ ∞

−∞
δ(x)dx = 1 (8.6)

• We recall the sifting property of δ(x): For any function g(x) which is

continuous at x = 0, we have
∫ ∞

−∞
g(x)δ(x)dx = g(0) (8.7)
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Example 8.2:

◮ Find the PDF of the waiting time in the previous example.

Solution: In Example 8.1, we found that

F (x) = pu(x) + (1 − p)(1 − e−λx)u(x)

Taking the derivative on both sides, we find:

f(x) = pδ(x) + (1 − p)[λe−λxu(x) + (1 − e−λx)δ(x)]

= pδ(x) + (1 − p)λe−λxu(x)

This PDF is illustrated below:

We invite the reader to verify that
∫∞

−∞
f(x)dx = 1. ◭

General form of the PDF:

• Consider a mixed RV with CDF F (x) = αFd(x) + βFc(x).

• According to (6.7), since Fd(x) is a discrete CDF, there exit numbers

{x1, x2, . . .} with corresponding probabilities p(xi) such that

Fd(x) =
∑

all i

p(xi)u(x− xi) (8.8)

The corresponding PDF is

fd(x) =
dFd(x)

dx
=
∑

all i

p(xi)δ(x− xi) (8.9)

• Making use of (8.9), the general form of the PDF of a mixed RV is

immediately obtained as:

f(x) = α
∑

all i

p(xi)δ(x− xi) + βfc(x) (8.10)

where fc(x) = F ′
c(x) is the continuous PDF associated to Fc(x).
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8.2 Unifying framework

Introduction:

• In Chapters 6 and 7, respectively, we separately studied and derived

important relations for discrete and continuous RVs.

• Using the extended definition of the PDF in (8.3), it is possible to re-

cast most of these relations into a single form applicable to discrete,

continuous and mixed RVs. This is considered below.

Properties of f(x):

• f(x) ≥ 0;
∫∞
−∞ f(x)dx = 1

• If f(x) is known, the CDF may be recovered from

F (x) =

∫ x+

−∞
f(t) dt (8.11)

where the upper limit x+ means that a singularity at the point t = x is

covered by the interval of integration.

• For any real number subset A, we have P (X ∈ A) =
∫

A f(x)dx
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Definition: Let X be a RV mixed with PDF f(x). Provided the integral
∫∞
−∞ |x|f(x)dx is finite, the expected value of X is defined as

µ = E(X) =

∫ ∞

−∞
x f(x) dx. (8.12)

Remarks:

• In the special case of a discrete RV,

f(x) =
∑

i

p(xi)δ(x− xi) (8.13)

and therefore

E(X) =

∫ ∞

−∞
x (
∑

i

p(xi)δ(x− xi)) dx

=
∑

i

p(xi)

∫ ∞

−∞
x δ(x− xi) dx =

∑

i

xi p(xi) (8.14)

which is identical to (6.19).

Example 8.3:

◮ Find the expected value of waiting time X in Example 8.1.

Solution: We previously found that

f(x) = pδ(x) + (1 − p)λe−λxu(x)

The expected value of X is obtained as follows:

E(X) =

∫ ∞

−∞

xf(x)dx

= p

∫ ∞

−∞

xδ(x)dx+ (1 − p)

∫ ∞

−∞

xe−λxu(x)dx

= p× 0 + (1 − p)

∫ ∞

0

xe−λxdx

= (1 − p)
1

λ

where we recognize the last integral has the expected value of an exponential RV

with parameter λ, which is equal to 1/λ. ◭
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Properties of expectation:

• Properties of the expectation derived for discrete and continuous RVs

remain valid for the extended definition of expectation given above.

• For example (see Th. 7.5), if the PFD f(x) is symmetric about a,

i.e. f(a− x) = f(a+ x) for all x ∈ R, then E(X) = a

• Also (see Th. 7.6), if Y = h(X), then

E(h(X)) =

∫ ∞

−∞
h(x)f(x) dx (8.15)

• Algebraic properties of the expectation, as stated in Corollary 7.6, also

remain valid.

Variance:

• The definition of the variance is unchanged, that is:

V ar(X) , E((X − µ)2), σX ,
√

V ar(X) (8.16)

• Properties of the variance derived perviously for discrete and continuous

RVs are generally applicable to mixed RVs.
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8.3 Moments of a RV

Definition: Let X be a RV with µ = E(X). Let n be a non-negative integer, r

be a non-negative real number and c be an arbitrary real number. We define:

(a) E(Xn) = nth moment of X

(b) E(|X|r) = rth absolute moment of X

(c) E[(X − c)n] = nth moment of X about c

(d) E[|X − c|r] = rth absolute moment of X about c

Remarks:

• When c = µ, moments about c are called central moments.

• Moments are useful in applications:

- For n = 1, E(Xn) = E(X) = mean

- For n = 2 and c = µ, E[(X−c)2] = V ar(X) = variance (2nd central

moment)

- The 3rd central moment provides information about the asymmetry

of f(x), etc.

• Note: some of these moments may not exist (= ∞).

Example 8.4:

◮ Let X ∼ N(µ, σ2). Find the nth central moments of X, where n is a positive

integer. ◭
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Remarks: In the study of RV, and specially when comparing different RVs,

it is often desirable to remove the effects of the mean and the variance. This

is achieved by properly normalizing the RVs of interest.

Definition: Let X be a RV with mean µ = E(X) and variance V ar(X) = σ2.

The random variable

Z =
X − µ

σ
(8.17)

is called the standardized X.

Theorem 8.1: The RV Z defined above has zero mean and unit variance:

E(Z) = 0, V ar(Z) = 1 (8.18)

Proof: Using the definition (8.13), we have

E(Z) =
1

σ
(E(X) − µ) = 0

V ar(Z) = V ar(
X

σ
− µ

σ
) =

1

σ2
V ar(X) = 1

Example 8.5:

◮ Suppose that the mean and standard deviation of all grades in the probability

course are 65 and 15, respectively, while the corresponding quantities for the

digital circuit course are 80 and 10. Mary has obtained 75 in probability and 85

in digital circuit. In what course is she doing better?

Solution: Let X1 with µ1 = 65 and σ1 = 15 denote the grade of a probability

student. Similarly, let X2 with µ2 = 80 and σ2 = 10 denote the grade of a digital

circuit student.

To determine in which course Mary did best, we compare her standardized grades

in both courses:

Z1 =
X1 − µ1

σ1

=
2

3

Z2 =
X2 − µ2

σ2

=
1

2

Since Z2 > Z1, we conclude that Mary did better in the probability course. ◭
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8.4 Characteristic function

Introduction:

• The characteristic function provides an alternative characterization of

the PDF of a random variable.

• It is useful in several different ways, and specially:

- in the computation of higher order moments of a RV

- in evaluating the PDF of certain combinations of multiple RVs (e.g.

sum of independent RVs).

- in proving fundamental limit theorems in probability.

• The characteristic functions is a special types of so-called generating

functions that come in different flavors:

- Probability generating function

- Moment generating function

- Characteristic function

• In these notes, we focus on the Characteristic function.
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8.4.1 Definition and properties

Definition: Let X be a random variable with PDF f(x). The Characteristic

function (CF) of X, denoted by ψ(ω), where ω ∈ R, is defined by

ψ(ω) , E(e−jωX) =

∫ ∞

−∞
f(x)e−jωx dx, ω ∈ R (8.19)

Remarks:

• As defined in (8.19), the CF indeed corresponds to the Fourier transform

of the PDF f(x).

• In standard probability textbooks, the CF is usually defined without

the minus sign in the argument of the exponential function in (8.19).

Conceptually, this difference is of no consequences. From a practical

perspective, however, the use of the minus sign in (8.19) allows the

direct application of various formulas available for the Fourier transform

in the calculation of (8.19).

• The integral in (8.19) always converges, regardless of the value of ω.

Indeed:

|ψ(ω)| = |
∫ ∞

−∞
f(x)e−jωx dx|

≤
∫ ∞

−∞
|f(x)e−jωx| dx =

∫ ∞

−∞
f(x) dx = 1 (8.20)
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Theorem 8.2 The PDF may be expressed in terms of its CF via

f(x) =
1

2π

∫ ∞

−∞
ψ(ω)ejωxdω, x ∈ R (8.21)

Remarks:

• This is merely a restatement of the well-known inverse Fourier transform

relationship that you have studied in a Signals and Systems course.

• One important consequence of this result is that the CF ψ(ω) uniquely

characterizes RV X. Indeed, if two RVs X and Y have the same CF, say

ψX(ω) = ψY (ω), then their PDF are identical, that is fX(x) = fY (x) for

all x ∈ R.

Theorem 8.3: Let ψ(ω) denote the CF of RV X. We have

E(Xn) = jn ψ(n)(0) (8.22)

where ψ(n)(0) ≡ dnψ(ω)
dωn

∣
∣
∣
ω=0

.

Proof: Taking the nth derivative of (8.19) with respect to ω, we have

ψ(n)(ω) =
dn

dωn

∫ ∞

−∞
f(x) e−jωx dx

=

∫ ∞

−∞
f(x) [

dn

dωn
e−jωx] dx

=

∫ ∞

−∞
(−jx)nf(x) e−jωx dx

Evaluating at ω = 0, we obtain

ψ(n)(0) = (−j)n
∫ ∞

−∞
xnf(x) dx = (−j)nE(Xn)

from which (8.122) follows immediately. �
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Remarks:

• The Theorem states that for any arbitrary integer n, the nth moment of

X may be obtained by first computing the nth derivative of ψ(ω) with

redpect to ω and then evaluating the result at ω = 0.

• In other words, if an analytical expression is available for ψ(ω), we can

compute all the moments E(Xn) using only derivatives (and some alge-

bra). This is why we sometimes refer to the characteristic function as a

generating function for the moments E(Xn).

• We note the following important special cases of (8.22):

µ = E(X) = jψ′(0) (8.23)

σ2 = V ar(X)

= E(X2) − µ2 = −ψ′′(0) + [ψ′(0)]2 (8.24)

Corollary 8.3: The McLaurin series of ψ(ω) is

ψ(ω) =
∞∑

n=0

ψ(n)(0)
ωn

n!
=

∞∑

n=0

E(Xn)
(−jω)n

n!
(8.25)

Usefulness:

• This result provides an alternative way of computing E(Xn) from ψ(ω).

• Indeed, suppose we already know the power series expansion of ψ(ω):

ψ(ω) = c0 + c1ω + c2
ω2

2
+ c3

ω3

3!
+ .... (8.26)

• Then, we can identify E(Xn) = jncn.
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8.4.2 Characteristic functions of continuous RVs

Uniform RV: Let X ∼ U(a, b) where a < b. The PDF of X is given by

f(x) =







1

b− a
, a < x < b,

0, otherwise.
(8.27)

Substituting into (8.15), we obtain

ψ(ω) =

∫ ∞

−∞
f(x)e−jωx dx

=
1

b− a

∫ b

a

e−jωx dx

=
e−jωb − e−jωa

jω(a− b)
(8.28)

Exponential RV: Let X be an exponential RV X with parameter λ > 0. The

PDF of X is given by

f(x) =







λe−λx, x > 0

0, x < 0
(8.29)

Substituting this expression in (8.15), we obtain the CF of X as follows:

ψ(ω) =

∫ ∞

0

λe−λxe−jωx dx

= λ

∫ ∞

0

e−(λ+jω)xdx (8.30)

= λ

[
e−(λ+jω)x

−(λ+ jω)

]∞

0

=
−λ

(λ+ jω)
(e−∞ − e0) (8.31)

=
λ

λ+ jω
(8.32)
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Normal RV Let X ∼ N(µ, σ2), with its PDF given by

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

, x ∈ R (8.33)

Substituting into (8.15), we have

ψ(ω) =
1√
2π

∫ ∞

−∞
e−(x−µ)2/2σ2

e−jωx dx, (8.34)

Upon evaluation of the integral (left as an exercise for the student), we obtain

ψ(ω) = exp(−jωµ− σ2ω2

2
) (8.35)

8.4.3 Characteristic functions of discrete RVs

Introduction:

• In this Section, we derive and study the characteristic functions of some

of the basic discrete RVs introduced in Chapter 6.

• Here, X is a discrete RV with set of possible values RX = {x1, x2, . . .}
and probability mass function p(xi).

• In this special case, the CF (8.15) reduces to

ψ(ω) = E(e−jωX) =
∑

x∈RX

p(x)e−jωx (8.36)
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Binomial RV:

• Let X ∼ B(n, p) with 0 ≤ p ≤ 1 and q = 1 − p.

• The PMF of X is given by

p(x) =

(
n

x

)

pxqn−x, x = 0, 1, ..., n (8.37)

and p(x) = 0 otherwise.

• The CF is obtained as follows:

ψ(ω) =
∞∑

x=0

p(x)e−jωx

=
∞∑

x=0

(
n

x

)

pxqn−xe−jωx

=
∞∑

x=0

(
n

x

)

(pe−jω)xqn−x

= (pe−jω + q)n (8.38)

• Let us apply the moment Theorem 8.3:

ψ′(ω) = −jpe−jωn(pe−jω + q)n−1

E(X) = jψ′(0) = pn(p+ q)n−1 = np (OK)

• Try to compute V ar(X) using (8.24).
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Geometric RV: For the geometric RV, we have

p(x) = p qx−1, x = 1, 2, 3, ... (8.39)

and p(x) = 0 otherwise. The CF is obtained as

ψ(ω) =
∞∑

x=1

p(x)e−jωx

=
∞∑

x=1

p qx−1e−jωx

= pe−jω
∞∑

x=0

(qe−jω)x

=
pe−jω

1 − qe−jω
(8.40)

Poisson RV: Let X be Poisson with parameter λ. Its PMF is given by

p(x) = P (X = x) =
λx

x!
e−λ, x = 0, 1, 2, ... (8.41)

and p(x) = 0 otherwise. We leave it as an exercise for the student to verify

that

ψ(ω) = exp(λ(e−jω − 1)) (8.42)
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Chapter 9

Bivariate distributions

Introduction and motivation:

Up to now, our study of RVs has been limited to considering only a single

RV, or function thereof, at a time. In many applications of probability in sci-

ence and engineering, we must deal with several RVs that are simultaneously

defined over a common probablity space.

For example, we might want to compute the probability that two RVs, say

X and Y , respectively belong to real number subsets A and B at the same

time, that is: P (X ∈ A, Y ∈ B).

In this and subsequent Chapters, the previously developed theory of a single

RV, i.e. Chapters 5 to 8, is extended to handle such situations. This leads to

the notion of joint distributions.

In this and the next Chapter, we first study in detail the case of two RVs, also

known as bivariate distribution. In a subsequent Chapter, we shall consider

the general case of n ≥ 2 RVs.

231



9.1 Bivariate distributions 232

9.1 Bivariate distributions

Definition: LetX and Y be two RVs defined on the probability space (S,F , P ).

We say that the mapping

s ∈ S → (X(s), Y (s)) ∈ R2 (9.1)

defines a two-dimensional random variable (or vector).

Joint events:

• It can be shown that for any practical subset D ⊆ R2 of the real plane,

the set of outcomes

{(X, Y ) ∈ D} , {s ∈ S : (X(s), Y (s)) ∈ D} (9.2)

is a valid event.1 We refer to (9.2) as a joint (or bi-variate) event.

• The situation of interest here is illustrated below:

S
 mapping (X,Y)


s


X(s
)


Y(s)


D
{s:(X(s),Y(s)) in D}


IR
2


Figure 9.1: Illustration of a mapping (X,Y ) from S into R2.

• Note that in the special case when D = A×B, where A ⊆ R and B ⊆ R,

(9.2) reduces to

{(X, Y ) ∈ D} = {X ∈ A, Y ∈ B}
1Specifically, if D ∈ BR2 , the Borel field of R2 (see Chapter 3), then {(X,Y ) ∈ D} ∈ F .
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Joint probability:

• Since {(X, Y ) ∈ D} is a valid event, the probability that (X, Y ) ∈ D is

a well-defined quantity. This probability, denoted

P ((X, Y ) ∈ D) ≡ P ({s ∈ S : (X(s), Y (s)) ∈ D}),

is called a joint probability.

• In this and the following sections, we develop tools to efficiently model

and compute joint probabilities. Our first step is to introduce a bivariate

CDF that generalizes the one defined in Chapter 5.

Definition: The joint cumulative distribution function (JCDF) of RVs X and

Y is defined as

F (x, y) = P (X ≤ x, Y ≤ y), for all (x, y) ∈ R2 (9.3)

Remarks:

• Note that F (x, y) = P ((X, Y ) ∈ C(x, y)) where we define C(x, y) =

(−∞, x]× (−∞, y]. Region C(x, y) is sometimes referred to as a corner:

• More generally, any practical subset D ⊆ R2 can be expressed as unions,

intersections and/or complements of corners. From the axioms of prob-

ability, it follows that for any D ⊆ R2, the joint probability P ((X, Y ) ∈
D) can be expressed in terms of F (x, y).
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Example 9.1:

◮ Let D = (0, 1] × (0, 1] ⊆ R2. Express P ((X,Y ) ∈ D) in terms of the joint CDF

of X and Y , i.e. F (x, y).

Solution: We have

P (0 < X ≤ 1, 0 < Y ≤ 1) = P (0 < X ≤ 1, Y ≤ 1) − P (0 < X ≤ 1, Y ≤ 0)

= P (X ≤ 1, Y ≤ 1) − P (X ≤ 0, Y ≤ 1) −
[P (X ≤ 1, Y ≤ 0) − P (X ≤ 0, Y ≤ 0)]

= F (1, 1) − F (0, 1) − F (1, 0) + F (0, 0)

A graphical interpretation of this result is provided in the figure below. ◭������x


Y

(0,1)


(1,0)


(1,1)


(0,0)
 ��(1,1)
�� ��=


-
 -
 +


(0,1)


(1,0)
 (0,0)


Theorem 9.1:

(a) F (x, y) is a non-decreasing function of its arguments x and y.

(b) F (−∞, y) = F (x,−∞) = F (−∞,−∞) = 0

(c) F (x,∞) = P (X ≤ x) = FX(x) (CDF of X)

F (∞, y) = P (Y ≤ y) = FY (y) (CDF of Y )

F (∞,∞) = 1

(d) F (x+, y) = F (x, y+) = F (x, y)

(e) If x1 < x2 and y1 < y2, then

F (x2, x2) − F (x2, y1) + F (x1, y1) − F (x1, y2) ≥ 0 (9.4)
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Remarks:

• Proof similar to that of Theorem 5.1.

• According to (a), if y is fixed and x1 < x2, then F (x2, y) ≥ F (x1, y).

Similarly, if x is fixed and y1 < y2, then F (x, y2) ≥ F (x, y1).

• In (b) and (c), interpret ±∞ as a limiting value, e.g.:

F (−∞, y) = lim
x→−∞

F (x, y).

• In (c), FX(x) and FY (y) are the CDF ofX and Y , respectively, as defined

in Chapter 6. Here, they are often called marginal CDF.

• In (d), x+ means the limit from the right, i.e.

F (x+, y) = lim
t→x+

F (t, y).

with a similar interpretation for y+.

• Any function F (x, y) satisfying the above properties is called a JCDF.

What’s next?

• In theory, if the JCDF F (x, y) is known for all (x, y) ∈ R2, we can

compute any joint probability for X and Y . In practice, we find that

the JCDF F (x, y) is a bit difficult to handle and visualize.

• For these reasons, we usually work with equivalent but simpler repre-

sentations of the joint CDF:

- X and Y discrete ⇒ joint PMF (Section 9.2)

- X and Y continuous ⇒ joint PDF (Section 9.3)
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9.2 Joint probability mass function

Definition: Let X and Y be discrete random variables with sets of possible

values RX = {x1, x2, ...} and RY = {y1, y2, ...}, respectively. We say that X

and Y are jointly discrete and we define their joint probability mass function

(JPMF) as

p(x, y) = P (X = x, Y = y), for all (x, y) ∈ R2 (9.5)

Theorem 9.2: The JPMF p(x, y) satisfies the following basic properties:

(a) 0 ≤ p(x, y) ≤ 1

(b) x /∈ RX or y /∈ RY ⇒ p(x, y) = 0

(c) Normalization property:

∑

x∈RX

∑

y∈RY

p(x, y) = 1 (9.6)

(d) Marginalization:

∑

y∈RY

p(x, y) = P (X = x) , pX(x) (9.7)

∑

x∈RX

p(x, y) = P (Y = y) , pY (y) (9.8)
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Proof:

• Results (a) and (b) follow trivially from the definition of the JDPF.

• For (c), observe that the events {X = x, Y = y}, where x ∈ RX and

y ∈ RY , form a partition of the sample space S. That is, they are

mutually exclusive and

⋃

x∈RX

⋃

y∈Ry

{X = x, Y = y} = S (9.9)

Using probability Axiom 3, we have

∑

x∈RX

∑

y∈RY

p(x, y) =
∑

x∈RX

∑

y∈RY

P (X = x, Y = y)

= P (
⋃

x∈RX

⋃

y∈RY

{X = x, Y = y}) = P (S) = 1

• For (d), note that for a given x, the events {X = x, Y = y} where

y ∈ RY , form a partition of {X = x}. That is, they are mutually

exclusive and
⋃

y∈RY

{X = x, Y = y} = {X = x} (9.10)

Again, using probability Axiom 3, we have

∑

y∈RY

p(x, y) =
∑

y∈RY

P (X = x, Y = y)

= P (
⋃

y∈RY

{X = x, Y = y}) = P (X = x) = pX(x)

A similar argument holds for pY (y). �
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Remarks:

• pX(x) and pY (y) are the probability mass functions (PMF) of X and Y ,

respectively, as defined in Chapter 6.

• In the present context, they are also called marginal DPFs.

Example 9.2:

◮ Let X and Y denote the numbers showing up when rolling a magnetically coupled

pair of dice. For (i, j) ∈ {1, . . . , 6}2, let the JPMF be given by

p(i, j) =

{

(1 + ǫ)/36 i = j

α/36 i 6= j.

where 0 < ǫ≪ 1.

(a) Find the constant α.

(b) Find the marginal PMF pX(i)

(c) Find the marginal PMF pY (j)

(d) Find P (X = Y ).

◭
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9.3 Joint probability density function (JPDF)

Definition: We say that RVs X and Y are jointly continuous if there exists

an integrable function f : R2 → [0,∞), such that for any subset D of R2, we

have:

P ((X, Y ) ∈ D) =

∫∫

D

f(x, y) dx dy (9.11)

The function f(x, y) is called the joint probability density function (JPDF)

of X and Y .

Interpretations of f(x, y):

• Let ∆x and ∆y be sufficiently small positive numbers, then:

P (|X − x| < ∆x

2
, |Y − y| < ∆y

2
) ≈ f(x, y) ∆x∆y (9.12)

• P ((X, Y ) ∈ D) is equal to the volume under the graph of f(x, y) over

the region D (see figure):
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Particular cases of interest:

• For any subsets A and B of R:

P (X ∈ A, Y ∈ B) =

∫

A

dx

∫

B

dy f(x, y) (9.13)

• Let A = [a, b] and B = [c, d]:

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ b

a

dx

∫ d

c

dy f(x, y) (9.14)

Note that the endpoints of the intervals A and B may be removed with-

out affecting the value of the integral. Accordingly,

P (a ≤ X ≤ b, c ≤ Y ≤ d) = P (a ≤ X < b, c ≤ Y ≤ d)

= P (a ≤ X < b, c ≤ Y < d)

= etc.

• Let C be any curve in the plane R2:

P ((X, Y ) ∈ C) =

∫∫

C

f(x, y) dx dy = 0 (9.15)

• For any (a, b) ∈ R2:

P (X = a, Y = b) = 0 (9.16)
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Theorem 9.3: The JPDF f(x, y) satisfies the following properties:

(a) f(x, y) ≥ 0

(b) Normalization: ∫∫

R2

f(x, y) dx dy = 1 (9.17)

(c) Marginalization:
∫ ∞

−∞
f(x, y) dy = fX(x) , PDF of X (9.18)

∫ ∞

−∞
f(x, y) dx = fY (y) , PDF of Y (9.19)

(d) Connection with JCDF:

F (x, y) =

∫ x

−∞
dt

∫ y

−∞
du f(t, u) (9.20)

∂2F (x, y)

∂x ∂y
= f(x, y) (9.21)

Note:

• In the present context, fX(x) and fY (y) are also called marginal PDF

of X and Y , respectively.
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Proof:

(a) Follows from the definition of f(x, y).

(b) Using (9.11) with D = R2, we have
∫∫

R2

f(x, y) dx dy = P ((X, Y ) ∈ R2) = 1

(c) From the definition of fX(x) as the PDF of X, we have that

P (X ∈ A) =

∫

A

fX(x) dx (9.22)

From the definition (9.11) of f(x, y), we also have

P (X ∈ A) = P (X ∈ A, Y ∈ R)

=

∫

A

(∫ ∞

−∞
f(x, y) dy

)

dx (9.23)

Both (9.22) and (9.23) being true for any subset A ⊆ R, it follows that

fX(x) =

∫ ∞

−∞
f(x, y) dy

(d) From (9.11), we immediately obtain

F (x, y) = P (X ≤ x, Y ≤ y) =

∫ x

−∞
dt

∫ y

−∞
du f(t, u)

At any continuity point of f(x, y), we have:

∂2F (x, y)

∂x ∂y
=

∂

∂y

(
∂

∂x

∫ x

−∞
dt

∫ y

−∞
du f(t, u)

)

=
∂

∂y

∫ y

−∞
du f(x, u)

= f(x, y) �
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Example 9.3:

◮ Example: Let X and Y be jointly continuous with JPDF

f(x, y) =

{

cxy if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

0 otherwise.
(9.24)

(a) Find the constant c.

(b) Find the probability that Y ≥ X.

(c) Find the marginal PDFs of X and Y , i.e. fX(x) and fY (y).

Solution: (a) Constant c is obtained from the normalization condition (9.17):

∫ ∞

−∞

f(x, y)dxdy = c

∫ 1

0

∫ 1

0

xy dx dy = c

(∫ 1

0

x dx

)2

= c

(

x2

2

∣
∣
∣
∣

1

0

)2

=
c

4
= 1 ⇒ c = 4

(b)We seek

P (Y ≥ X) = P ((X,Y ) ∈ D) =

∫∫

D

f(x, y) dx dy

=

∫ 1

0

(∫ 1

x

4xy dy

)

dx =

∫ 1

0

(

2xy2
∣
∣
1

x

)

dx

= 2

∫ 1

0

(x− x3) dx = 2

(
x2

2
− x4

4

)∣
∣
∣
∣

1

0

= 2

(
1

2
− 1

4

)

=
1

2

(c) ... ◭
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9.3.1 Uniform distribution

Definition: X and Y are jointly uniform over region D ⊆ R2, or equivalently

(X, Y ) ∼ U(D), if their joint PDF takes the form

f(x, y) =







c for all (x, y) ∈ D

0 otherwise
(9.25)

where c is a constant.

Remarks:

• The value of the constant c is obtained from the requirement that f(x, y)

be properly normalized, that is:
∫∫

D

f(x, y) dx dy = 1 ⇒ c =
1

∫∫

D dx dy
=

1

Area(D)
(9.26)

• If (X, Y ) ∼ U(D), then for any subset E ⊆ R2:

P ((X, Y ) ∈ E) =

∫∫

E

f(x, y) dx dy

= c

∫∫

E∩D
dx dy =

Area(E ∩D)

Area(D)
(9.27)

• The above concept is equivalent to the random selection of points from

a region D ⊆ R2, as previously discussed in Chapter 3.
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Example 9.4:

◮ Bill and Monica decide to meet for dinner between 20:00 and 20:30 in a restau-

rant lounge. Assuming that they arrive at random during this time, find the

probability that the waiting time of any one of them be more than 15 minutes?

Solution: Let X and Y respectively denote the arrival time of Bill and Monica

in minutes after 20:00. Assume (X,Y ) ∼ U(D) where

D = {(x, y) : 0 ≤ x ≤ 30 and 0 ≤ y ≤ 30}

The event that the waiting time of Bill or Monica is more than 15 minutes can

be expressed as

E = {(x, y) ∈ S : |x− y| ≥ 15}
This event is illustrated below:

The desired probability is

P ((X,Y ) ∈ E) =
Area(E)

Area(D)

=
2 × (15 × 15)/2

30 × 30
=

1

4

◭
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9.3.2 Normal Distribution

Definition: RVs X and Y are jointly normal if their joint PDF can be ex-

pressed in the form

f(x, y) =
1

2πσXσY
√

1 − ρ2
exp[−1

2
Q(
x− µX
σX

,
y − µY
σY

)], (x, y) ∈ R2

(9.28)

where

Q(u, v) =
1

1 − ρ2
(u2 − 2ρuv + v2) (9.29)

and the parameters µX and µY ∈ R, σX and σY > 0 and −1 < ρ < 1.

Remarks:

• We also refer to (9.28) as the bivariate Gaussian distribution.

• Compact notation: (X, Y ) ∼ N(µX , µY , σ
2
X , σ

2
Y , ρ)

• It can be shown that f(x, y) is properly normalized, that is:
∫∫

R2

f(x, y) dx dy = 1 (9.30)

• The precise meaning of the parameters µX , µY , σX , σY and ρ will become

clear as we progress in our study.

• The normal distribution (and its multi-dimensional extension) is one of

the most important joint PDF in applications of probability.

c© 2003 Benôıt Champagne Compiled September 12, 2006



9.3 Joint probability density function (JPDF) 247

Shape of f(x, y):

• The function Q(u, v) in (9.29) is a positive definite quadratic form:

Q(u, v) ≥ 0, for all (u, v) ∈ R2

with equality iff (u, v) = (0, 0). Therefore, f(x, y) (9.28) attains its

absolute maximum at the point (µX , µY ).

• In the limit u → ±∞ and/or v → ±∞, the function Q(u, v) → +∞.

Accordingly, f(x, y) → 0 in the limit x→ ±∞ and/or y → ±∞.

• A study of the quadratic form (9.29) shows that its level contour curves,

i.e. the locus defined by Q(u, v) = c for positive constants c, are ellipses

centered at (0, 0), with the orientation of the principal axis depending

on ρ.

• Accordingly, the graph of the function f(x, y) has the form of a bell-

shaped surface with elliptic cross-sections:

- The bell is centered at the point (µX , µY ) where f(x, y) attains its

maximum value.

- The level contours of the function f(x, y) have the form of ellipses

whose exact shape depend on the parameter σX , σY and ρ.
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Figure 9.2: The bivariate normal PDF.
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Theorem 9.4: Let (X, Y ) ∼ N(µX , µY , σ
2
X , σ

2
Y , ρ). The marginal PDF of X

and Y are given by

fX(x) =
1√

2πσX
e−(x−µX)2/2σ2

X , fY (y) =
1√

2πσY
e−(y−µY )2/2σ2

Y (9.31)

That is, X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y )

Remarks:

• The proof is left as an exercise for the student.

• According to Theorem 9.4, joint normality of RVs X and Y implies that

each one of them is normal when considered individually.

• The converse to this statement is not generally true: X and Y being

normal when taken in isolation does not imply that they are jointly

normal in general.

• Theorem 9.4 provides a complete explanation for the meaning of the

parameters µX , σX , µY and σY :

◦ µX = E(X) = expected value of X

◦ σ2
X = V ar(X) = variance of X

◦ with similar interpretations for µY and σY

• The exact signification of the parameter ρ, called correlation coefficient,

will be explained in the next chapter.
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9.4 Conditional distributions

It is often of interest to compute the conditional probability that RV X

belong to a real number subset B ⊆ R, given that a certain event, say A, has

occurred, that is:

P (X ∈ B |A)

In this Section, we develop the necessary theory to handle this kind of prob-

ability computations. Special emphasis is given to the case where the event

A is itself defined in terms of a second RV, say Y .

9.4.1 Arbitrary event A

Definition: Let X be a RV (discrete or continuous) and let A be some event

with P (A) > 0. The conditional CDF of X given A is defined as

F (x |A) , P (X ≤ x |A) =
P (X ≤ x,A)

P (A)
, all x ∈ R (9.32)

Remarks:

• The function F (x |A) is a valid CDF, in the sense that it satisfies all the

basic properties of a CDF (see Theorem 5.1).

• In theory, the function F (x |A) can be used to compute any probability

of the type P (X ∈ B |A). In practice, it is preferable to work with

closely related functions as defined below.
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Definition: LetX be a discrete RV with set of possible values RX = {x1, x2, ...}.
The conditional PMF of X given A is defined as

p(x |A) , P (X = x |A) =
P (X = x,A)

P (A)
, all x ∈ R (9.33)

Remarks:

• The function p(x |A) is a valid PMF. In particular (see Theorem 6.1),

we have: p(x |A) ≥ 0, p(x |A) = 0 for all x /∈ RX and

∑

x∈RX

p(x |A) =
∑

all i

p(xi |A) = 1 (9.34)

• Furthermore, for any subset B ⊆ R, we have

P (X ∈ B |A) =
∑

xi∈B
p(xi |A) (9.35)
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Definition: Let X be a continuous RV. The conditional PDF of X given A is

defined as

f(x |A) ,
dF (x |A)

dx
, x ∈ R (9.36)

Remarks:

• The function f(x|A) is a valid PDF (see Theorem 7.2). In particular,

we have f(x |A) ≥ 0 for all x ∈ R and
∫ ∞

−∞
f(x |A) dx = 1 (9.37)

• For any subset B ⊆ R:

P (X ∈ B |A) =

∫

B

f(x |A) dx. (9.38)

• As a special case of the above, we note:

F (x |A) =

∫ x

−∞
f(t |A) dt (9.39)
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9.4.2 Event A related to discrete RV Y

Introduction: Let Y be a discrete RV with possible values RY = {y1, y2, ...}
and marginal PMF pY (y). The event A under consideration here is

A = {s ∈ S : Y (s) = y} = {Y = y} (9.40)

for some y such that pY (y) > 0.

Definition: Let y ∈ R be such that pY (y) > 0. The conditional CDF of X

given Y = y is defined as

FX|Y (x |y) , P (X ≤ x |Y = y) =
P (X ≤ x, Y = y)

P (Y = y)
, x ∈ R (9.41)

Remarks:

• In theory, knowledge of FX|Y (x |y) is sufficient to compute any condi-

tional probability of the type P (X ∈ B|Y = y), for any subset B ∈ R.

• In practice, depending whether X is discrete or cont., we find it more

convenient to work with closely related functions, as explained next.
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Definition: Suppose X is a discrete RV with set of possible values RX =

{x1, x2, ...}. The conditional PMF of X given Y = y is defined as

pX|Y (x |y) , P (X = x |Y = y), x ∈ R (9.42)

Remarks:

• Invoking the definition of conditional probability, we have

pX|Y (x |y) =
P (X = x, Y = y)

P (y = Y )
=
p(x, y)

pY (y)
(9.43)

where p(x, y) is the joint PMF of X and Y , as defined in (9.5).

• Since pX|Y (x |y) in (9.42) is a special case of p(x |A) (9.33), it is also

a valid PMF. In particular, it satisfies properties similar to those in

(9.34)-(9.35) with obvious modifications in the notation.

Example 9.5:

◮ Let X and Y be defined as in Example 9.2. Find the conditional PMF of X given

Y = j where j ∈ {1, . . . , 6}.
Solution: From Example 9.2, we recall that

p(i, j) =

{

(1 + ǫ)/36, i = j

α/36, i 6= j

where α = 1 − ǫ
5

and

pY (j) = 1/6, all j

The desired conditional probability is obtained as

pX|Y (i|j) =
p(i, j)

pY (j)
=

{

(1 + ǫ)/6, i = j

α/6, i 6= j

◭
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Definition: Suppose X is a continuous RV. The conditional PDF of X given

Y = y is defined as

fX|Y (x|y) ,
∂FX|Y (x|y)

∂x
(9.44)

Remarks:

• fX|Y (x |y) is a special case of f(x |A) (9.36) and as such, it is a valid

PDF.

• It satisfies properties similar to those in (9.37)-(9.39) with obvious mod-

ifications in notation, e.g.:

P (X ∈ B |Y = y) =

∫

B

fX|Y (x |y) dx. (9.45)

Example 9.6: Binary communications over noisy channel.

◮ Let discrete RV Y ∈ {−1,+1} denote the amplitude of a transmitted binary

pulse at the input of a digital communication link. Assume that

pY (y) = P (Y = y) = 1/2, y ∈ {−1, 1}

Let X denote the received voltage at the output of the link. Under the so-called

additive Gaussian noise assumption, we may assume that conditional on Y = y,

RV X is N(y, σ2). Given a positive pulse was transmitted, find the probability

that the receiver makes an erroneous decision, that is find P (X ≤ 0 |Y = 1). ◭
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9.4.3 Event A related to continuous RV Y

Introduction:

• Let X and Y be jointly continuous with PDF f(x, y) and consider the

event A = {Y = y}, for some y such that fY (y) > 0.

• How can we characterize the conditional probability distribution of RV

X, given that event A, i.e. Y = y, has been observed?

• Our previous definition of conditional CDF is not applicable here. Indeed

FX|Y (x |y) = P (X ≤ x |Y = y) =
P (X ≤ x, Y = y)

P (Y = y)
=

0

0
(?)

• To accommodate this situation, the following extended definition of con-

ditional CDF, based on the concept of limit, is commonly used.

Definition: Let X and Y be jointly continuous. The conditional CDF of X,

given Y = y, is defined as

FX|Y (x |y) , lim
ǫ→0+

P (X ≤ x |y − ǫ < Y ≤ y + ǫ). (9.46)
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Definition: Let X and Y be jointly continuous. The conditional PDF of X,

given Y = y, is defined as

fX|Y (x |y) ,
∂FX|Y (x |y)

∂x
. (9.47)

Remarks:

• The function fX|Y (x |y) is a valid PDF; it satisfies properties similar to

(9.37)-(9.39) with obvious modifications. In particular:

fX|Y (x |y) ≥ 0, x ∈ R (9.48)

∫ ∞

−∞
fX|Y (x |y) dx = 1 (9.49)

FX|Y (x |y) =

∫ x

−∞
fX|Y (t |y) dt (9.50)

• In practice, the conditional PDF fX|Y (x |y) is used instead of the condi-

tional CDF in the computation of probabilities:

P (X ∈ B|Y = y) =

∫

B

fX|Y (x |y) dx (9.51)

Theorem 9.5: Provided fY (y) > 0, the conditional PDF of X given Y = y

can be expressed as

fX|Y (x |y) =
f(x, y)

fY (y)
(9.52)
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Proof (optional material):

FX|Y (x |y) = lim
ǫ→0+

P (X ≤ x |y − ǫ < Y ≤ y + ǫ)

= lim
ǫ→0+

P (X ≤ x, y − ǫ < Y ≤ y + ǫ)

P (y − ǫ < Y ≤ y + ǫ)

= lim
ǫ→0+

∫ x

−∞ dt
∫ y+ǫ

y−ǫ duf(t, u)
∫ y+ǫ

y−ǫ dufY (u)

=

∫ x

−∞
dt lim

ǫ→0+

[∫ y+ǫ

y−ǫ duf(t, u)
∫ y+ǫ

y−ǫ dufY (u)

]

=

∫ x

−∞
dt lim

ǫ→0+

[
2ǫf(t, y)

2ǫfY (y)
+O(ǫ)

]

=

∫ x

−∞
dt
f(t, y)

fY (y)
(9.53)

Taking the partial derivative with respect to x, we finally obtain

fX|Y (x |y) =
∂FX|Y (x |y)

∂x
=
f(x, y)

fY (y)
�

Example 9.7:

◮ A rope of length L is cut into three pieces in the following way:

- The first piece of length X is obtained by cutting the rope at random.

- The second piece of length Y is obtained by cutting the remaining segment

of length L−X at random

- The third piece is obtained as the remaining segment of length L−X − Y .

(a) Find fY |X(y|x), the conditional PDF of Y given X = x (0 < x < L).

(b) Find f(x, y), the Joint PDF of X and Y , and illustrate the region of the plane

where it takes on non-zero values.

(c) What is the probability that both X and Y be less than L/2?

◭
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9.5 Independent RVs

Definition: We say that RVs X and Y are independent if the events {X ∈ A}
and {Y ∈ B} are independent for any real number subsets A and B, that is:

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) (9.54)

for any A ⊆ R and B ⊆ R.

Link with joint CDF:

• Let F (x, y) denote the joint CDF of RVs X and Y . If X and Y are

independent, we have

F (x, y) = P (X ≤ x, Y ≤ y)

= P (X ≤ x)P (Y ≤ y)

= FX(x)FY (y) (9.55)

• Conversely, it can be shown that if F (x, y) = FX(x)FY (y) for all (x, y) ∈
R2, then X and Y are independent.

Theorem 9.6: X and Y are independent if and only if

F (x, y) = FX(x)FY (y), all (x, y) ∈ R2 (9.56)
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9.5.1 Discrete case

Theorem 9.7: Let X and Y be discrete RVs with joint PMF p(x, y). X and

Y are independent if and only if

p(x, y) = pX(x) pY (y), all (x, y) ∈ R2 (9.57)

Proof: Suppose that X and Y are independent. Then,

p(x, y) = P (X = x, Y = y)

= P (X = x)P (Y = y)

= pX(x)pY (y)

Conversely, suppose that (9.57) is satisfied. Let RX = {x1, x2, ...} and RY =

{y1, y2, ...} denote the sets of possible values of X and Y , respectively. Then,

for any real number subsets A and B, we have

P (X ∈ A, Y ∈ B) =
∑

xi∈A

∑

yj∈B
p(xi, yj)

=
∑

xi∈A
pX(xi)

∑

yj∈B
pY (yj)

= P (X ∈ A)P (Y ∈ B) �

Example 9.8:

◮ Consider 20 independent flips of a fair coin. What is the probability of 6 heads

in the first 10 flips and 4 heads in the next 10 flips? ◭
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9.5.2 Continuous case

Theorem 9.8: Let X and Y be continuous RVs with joint PDF f(x, y). X

and Y are independent if and only if

f(x, y) = fX(x)fY (y), all (x, y) ∈ R2 (9.58)

Example 9.9:

◮ Suppose X and Y are independent RVs, each being exponentially distributed

with parameter λ = 1. Find P (Y > X + 1) ? ◭
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9.5.3 Miscellaneous results

Theorem 9.9: If RVs X and Y are independent, so are U = g(X) and V =

h(Y ), for any functions g : R → R and h : R → R.

Application: Suppose that X and Y are independent RVs. Then so are RVs

sin(X2) and eY−1

Theorem 9.10: If X and Y are independent, then FX|Y (x |y) = FX(x). Fur-

thermore, if X and Y are jointly discrete, then pX|Y (x |y) = pX(x), while if

they are jointly continuous, then fX|Y (x |y) = fX(x).

Theorem 9.11: Let X and Y be jointly normal, as defined in (9.28)-(9.29).

Then X and Y are independent if and only if ρ = 0.

Prof: If ρ = 0 in (9.28)-(9.29), we immediately obtain

f(x, y) =
1√

2πσX
e
− 1

2σ2
X

(x−µX)2 1√
2πσY

e
− 1

2σ2
Y

(y−µY )2

= fX(x) fY (y) (9.59)

where the result of Theorem 9.4 has been used. Conversely, it can be shown

that if f(x, y) (9.28) is equal to the product of fX(x) and fY (y) in (9.31),

then we must have ρ = 0 �.
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9.6 Transformation of joint RVs

Introduction:

• Let X and Y be jointly continuous RVs with known PDF f(x, y).

• In applications, we are often interested in evaluating the distribution of

one or more RVs defined as a function of X and Y , as in h(X, Y ).

• Here, we distinguish two relevant cases:

- h : R2 → R

- h : R2 → R2

• In each case, we present a technique that can be used to determine the

PDF of the transformed variables.

9.6.1 Transformation from R2 → R

Problem formulation:

• Let Z = h(X, Y ), where h : R2 → R.

• We seek the PDF of RV Z, say g(z).

Method of distribution:

• For each z ∈ R, find domain Dz ⊆ R2 such that

Z ≤ z ⇐⇒ (X, Y ) ∈ Dz (9.60)
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• Express the CDF of Z as:

G(z) = P (Z ≤ z)

= P ((X, Y ) ∈ Dz) =

∫∫

Dz

f(x, y) dx dy (9.61)

• Find the PDF by taking the derivative of G(z):

g(z) =
dG(z)

dz
(9.62)

Example 9.10:

◮ Let X and Y be uniformly distributed over the square (0, 1)2 ⊆ R2. Find the

PDF of Z = X + Y . ◭

Theorem 9.12 Let X and Y be independent RVs with marginal PDFs fX(x)

and fY (y), respectively. The PDF of Z = X + Y is given by

g(z) =

∫ ∞

−∞
fX(x)fY (z − x)dx (9.63)

Remarks:

• That is, the PDF of Z is obtained as the convolution of the marginal

PDFs of X and Y .

• The proof is left as an exercise.

• Please note that the previous example is a special case of this theorem.
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9.6.2 Transformation from R2 → R2

Introduction:

• We consider the transformation (U, V ) = h(X, Y ), where h : R2 → R2.

• We seek the joint PDF of RV U and V , say g(u, v).

• The proposed approach is based on the following theorem, which pro-

vides a generalization of the method of transformation in Section 7.2.2

Theorem 8.9: For every (u, v) ∈ R2, let xi ≡ xi(u, v) and yi ≡ yi(u, v)

(i = 1, 2, ...) denote the distinct roots of the equation (u, v) = h(x, y). The

joint PDF of U and V may be expressed as

g(u, v) =
∑

i

f(xi, yi)|Ji| (9.64)

Ji = det

[
∂xi

∂u
∂xi

∂v
∂yi

∂u
∂yi

∂v

]

=
∂xi
∂u

∂yi
∂v

− ∂yi
∂u

∂xi
∂v

(9.65)

Remarks:

• If the equation (u, v) = h(x, y) has no root, then set g(u, v) = 0.

• In (8.52), xi and yi really stand for xi(u, v) and yi(u, v), respectively.

• The determinant Ji in (405) is the so-called Jacobian of the inverse

transformation (u, v) → (xi, yi).
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Example 9.11:

◮ Assume X and Y are continuous with joint PDF f(x, y). Let U = X + Y and

V = X − Y .

(a) Find the joint PDF g(u, v) of U and V .

(b) In the special case when X and Y are independent, find the marginal PDF

of U , say gU(u). ◭
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Chapter 10

Bivariate expectations

Introduction:

• In Chapters 6, 7 and 8, our discussions of the expectation operator have

been limited to the case of a single RV taken in isolation, as in E(X),

and possible functions thereof, as in E(g(X)).

• In this Chapter, we extend the notion of expectation to the bivariate

framework, where two RVs, say X and Y , are jointly distributed.

• More generally, we shall consider expectations of the type E(g(X, Y ))

where X and Y are jointly distributed.

267
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10.1 Basic results

Scope of our study:

• Let X and Y be two RVs defined over a common sample space.

• We shall focus our attention onto two special cases of interest:

- RVsX and Y are discrete with sets of possible values RX = {x1, x2, . . .}
and RY = {y1, y2, . . .}, respectively, and joint PMF p(x, y).

- RVs X are Y are continuous with joint PDF f(x, y)

• We are mainly interested in computing expectations of the type E(Z),

Z = h(X, Y ) where h : R2 → R.

• We begin we a review of the (unified) definition of expectation, as given

in Section 8.2.

Definition: Let Z be an arbitrary RV. The expected value of Z is defined as

E(Z) =

∫ ∞

∞
zfZ(z) dz (10.1)

where fZ(z) denotes the (generalized) PDF of Z.

Remarks:

• This definition is identical to that in (8.8) and is applicable whether Z

is a discrete, continuous or mixed RV.
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• In the special case where Z is discrete with possible values {zi} and PMF

pZ(z), (10.1) reduces to

E(Z) =
∑

i

zi pZ(zi)

• Now let Z = h(X, Y ), with X and Y as previously defined. Direct appli-

cation of (10.1) to compute E(Z) = E(h(X, Y )) requires the knowledge

of the PDF fZ(z), or the PMF pZ(z) in the discrete case.

• Computing fZ(z) may be very difficult in practice. Fortunately, as the

following theorem states, it is not actually necessary to know fZ(z) ex-

plicitly to compute E(Z).

Theorem 10.1: Let Z = h(X, Y ) where h : R2 → R. The expected value of

Z may be expressed in one of the following forms.

(a) If X and Y are jointly discrete:

E(Z) = E(h(X, Y )) =
∑

i

∑

j

h(xi, yj)p(xi, yj) (10.2)

(b) If X and Y are jointly continuous:

E(Z) = E(h(X, Y )) =

∫ ∞

∞

∫ ∞

∞
h(x, y)f(x, y) dx dy (10.3)
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Remarks:

• The proof of this theorem is beyond the scope of the course.

• Below, we verify the validity of the theorem in a very simple case. Con-

sider the continuous case and let h(X, Y ) = X. Then according to

Theorem 10.1:

E(X) =

∫ ∞

∞

∫ ∞

∞
x f(x, y) dx dy

=

∫ ∞

∞
x

(∫ ∞

−∞
f(x, y) dy

)

dx

=

∫ ∞

∞
xfX(x) dx (10.4)

which corresponds precisely to the definition of E(X).

Example 10.1:

◮ Let RVsX and Y be jointly uniform over the regionD = {(x, y) : 0 < x < y < 1}.
Find E(X), E(Y ), E(X2), E(Y 2) and E(XY ).

Solution: The region D is illustrated below:

Note that the area of D is 1/2. Since X and Y are jointly uniform over that

region, their joint PDF is given by

f(x, y) =

{

2, (x, y) ∈ D

0, otherwise
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Using f(x, y), the desired expectations can be easily obtained as follows:

E(X) =

∫∫

R2

x f(x, y) dx dy = 2

∫∫

D

x dx dy

= 2

∫ 1

0

dx x

∫ 1

x

dy = 2

∫ 1

0

dx x (1 − x2)

= 2

(
x2

2
− x3

3

)∣
∣
∣
∣

1

0

=
1

3

In the same way, we find:

E(Y ) = 2

∫∫

D

y dx dy = 2

∫ 1

0

dx

∫ 1

x

y dy

= 2

∫ 1

0

dx (
1

2
− x2

2
) = 2

(
x2

2
− x3

6

)∣
∣
∣
∣

1

0

=
2

3

E(X2) = 2

∫ 1

0

dx x2

∫ 1

x

dy = 2

∫ 1

0

dx (x2 − x3)

= 2

(
x3

3
− x4

4

)∣
∣
∣
∣

1

0

=
1

6

E(Y 2) = 2

∫ 1

0

dx

∫ 1

x

dy y2 =
2

3

∫ 1

0

dx (1 − x3)

=
2

3

(

x− x4

4

)∣
∣
∣
∣

1

0

=
1

2

E(XY ) = 2

∫ 1

0

dx x

∫ 1

x

dy y =

∫ 1

0

dx x(1 − x2)

=

(
x2

2
− x4

4

)∣
∣
∣
∣

1

0

=
1

4

◭
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Theorem 10.2:

E(
∑

k

αkhk(X, Y )) =
∑

k

αkE(hk(X, Y )) (10.5)

Proof (continuous case):

E(
∑

k

αkhk(X, Y )) =

∫ ∞

∞

∫ ∞

∞
(
∑

k

αkhk(x, y))f(x, y) dx dy

=
∑

k

αk

∫ ∞

∞

∫ ∞

∞
hk(x, y)f(x, y) dx dy

=
∑

k

αkE(hk(X, Y )) � (10.6)

Remarks:

• E(.) acts linearly on its arguments:

• This theorem is useful when computing the expectation of complex ran-

dom expressions. For example:

E(3X2 + 2 sin(XY )) = 3E(X2) + 2E(sin(XY ))

Note however that in general, E(sin(XY )) 6= sin(E(XY )).
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Theorem 10.3: Suppose RVs X and Y are independent. Then

E(g(X)h(Y )) = E(h(X))E(g(Y )) (10.7)

Proof (discrete case): Suppose X and Y are independent. Then, their joint

PMF is expressible as p(x, y) = pX(x)pY (y) and

E(g(X)h(Y )) =
∑

i

∑

j

g(xi)h(yj) p(xi, yj)

= (
∑

i

g(xi)pX(xi)) (
∑

j

h(yj)pY (yj))

= E(g(X))E(h(Y )) � (10.8)

Remarks:

• As a special case of Theorem 10.3, if RVs X and Y are independent,

then E(XY ) = E(X)E(Y ).

• Equivalently, E(XY ) 6= E(X)E(Y ) implies that X and Y are not inde-

pendent. However, E(XY ) = E(X)E(Y ) does not imply that X and Y

are independent in general.
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10.2 Covariance and correlation

Introduction:

• Recall the definition of the variance for a single RV X, i.e.:

V ar(X) = E[(X − µX)2)] (10.9)

• Here, we study a generalization of the concept of variance, called the

covariance, which is applicable to a pair of jointly distributed RVs.

Definition: Let X and Y be jointly distributed with mean µX and µY , re-

spectively. The covariance of X and Y is defined as

Cov(X, Y ) = E[(X − µX)(Y − µY )] (10.10)

Remarks:

• We note that in the special case Y = X, Cov(X, Y ) = V ar(X).

• In order to develop an intuitive feel for the concept of variance, we need

to further analyze its properties.

• This analysis will make use of the following property of bivariate expec-

tation, stated as a lemma without proof.
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Lemma 10.4 (Cauchy-Schwarz inequality):

|E(XY )| ≤
√

E(X2)E(Y 2) (10.11)

with equality if and only if Y = αX for some constant α.

Theorem 10.5: Basic properties of the covariance

(a) Cov(X,X) = V ar(X) = σ2
X

(b) Cov(X, Y ) = Cov(Y,X)

(c) Cov(aX + b, cY + d) = acCov(X, Y )

(d) |Cov(X, Y )| ≤ σXσY

(e) Cov(X, Y ) = E(XY ) − E(X)E(Y )

(f) If X and Y are independent, then Cov(X, Y ) = 0

Proof: Properties (a), (b) and (c) follow trivially from the definition of the

covariance. To prove (d), define

X ′ = X − µX and Y ′ = Y − µY

and note that

Cov(X, Y ) = E(X ′Y ′), E(X ′2) = σ2
X and E(Y ′2) = σ2

Y .

Then, making use of Lemma 10.4, we have

|Cov(X, Y )| = |E(X ′Y ′)| ≤
√

E(X ′2)E(Y ′2) = σXσY

Property (e) can be proved as follows:
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Cov(X, Y ) = E[(X − µX)(Y − µY )]

= E(XY − µXY − µYX + µXµY )

= E(XY ) − µXE(Y ) − µYE(X) + µXµY

= E(XY ) − µXµY

Finally, for (f), we note from Theorem 10.3 that if X and Y are independent:

Cov(X, Y ) = E[(X − µX)(Y − µY )] = E(X − µX)E(Y − µY ) = 0 �

Example 10.2:

◮ Consider the joint RVs X and Y as defined in Example 10.1. Find Cov(X,Y ).

Solution: We have

Cov(X,Y ) = E(XY ) − E(X)E(Y ) =
1

4
− 2

9
=

1

36

◭

Example 10.3:

◮ Let X and Y be jointly distributed. Express V ar(X +Y ) in terms of σ2
X , σ

2
Y and

Cov(X,Y ).

V ar(X + Y ) = E((X + Y )2) − (E(X + Y ))2

= E(X2 + Y 2 + 2XY ) − (µX + µY )2

= E(X2) + E(Y 2) + 2E(XY )

−µ2
X − µ2

Y − 2µXµY

= V ar(X) + V ar(Y ) + 2Cov(X,Y ) (10.12)

Observe that when Cov(X,Y ) = 0, then V ar(X + Y ) = V ar(X) + V ar(Y ) ◭

c© 2003 Benôıt Champagne Compiled September 12, 2006



10.2 Covariance and correlation 277

Definition: The correlation coefficient of RVs X and Y is defined as

ρ(X, Y ) =
Cov(X, Y )

σXσY
(10.13)

Remark: The main difference between ρ(X, Y ) and Cov(X, Y ) is that the

former has been normalized and is a dimensionless quantity. In effect (see

Theorem below), we have that −1 ≤ ρ(X, Y ) ≤ 1

Example 10.4:

◮ Find the correlation coefficient of the joint RVs X and Y in Example 10.1.

Solution: From Example 10.1, recall that

E(X) = µX =
1

3
, E(Y ) = µY =

2

3
, E(X2) =

1

6
, E(Y 2) =

1

2

This information is first used to compute V ar(X) and V ar(Y ):

σ2
X = V ar(X) = E(X2) − µ2

X =
1

6
− 1

9
=

1

18

σ2
Y = V ar(Y ) = E(Y 2) − µ2

Y =
1

2
− 4

9
=

1

18

Finally, we obtain:

ρ(X,Y ) =
Cov(X,Y )

σXσY

=
1/36

1/18
=

1

2

◭
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Theorem 10.6: Basic properties of the correlation coefficient:

(a) ρ(X,X) = 1

(b) ρ(X, Y ) = ρ(Y,X)

(c) ρ(aX + b, cY + d) = ǫ ρ(X, Y ), where ǫ = sign(ac).

(d) |ρ(X, Y )| ≤ 1

(e) ρ(X, Y ) = 1 ⇐⇒ Y = aX + b for some a > 0

ρ(X, Y ) = −1 ⇐⇒ Y = aX + b for some a < 0

(f) If X and Y are independent, then ρ(X, Y ) = 0

Discussion:

• The proofs of these properties parallel those under Theorem 10.5 and

are left as exercise for the students.

• The correlation coefficient ρ(X, Y ) provides a measure of the degree (and

sign) of linear association between RVs X and Y .

• If ρ(X, Y ) = 1, then Y = aX + b for some real numbers a > 0 and b.

That is, let L = {(x, y) : y = ax+ b}. Then P ((X, Y ) ∈ L) = 1.

• If 0 < ρ(X, Y ) < 1, we have an intermediate situation: the contour

curves of the joint pdf of X and Y are more or less concentrated along

some line L = {(x, y) : y = ax+ b} with positive slope a > 0:
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• A similar interpretation applies for negative values of ρ(X, Y ), but the

slope of line L is now negative:

• Standard terminology:

- if ρ(X, Y ) > 0, we say that X and Y are positively correlated

- if ρ(X, Y ) < 0, we say that X and Y are negatively correlated

- if ρ(X, Y ) = 0, we say that X and Y are uncorrelated

• A final note of caution: if RVsX and Y are independent, then ρ(X, Y ) =

0 and they are uncorrelated. However, if RVs X and Y are uncorrelated,

they are note necessarily independent.
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Theorem 10.7: Let X and Y be jointly normal with parameters µx, µy, σX ,

σY and ρ, i.e. with joint PDF as defined in (9.28)-(9.29). The parameter ρ

in these equations is precisely the correlation coefficient of X and Y :

ρ(X, Y ) ,
Cov(X, Y )

σXσY
= ρ (10.14)

Proof: Calculus manipulations left as an optional exercise.

Corollary: Let X and Y be jointly normal: Then X and Y are independent

if and only if ρ(X, Y ) = 0.

Remarks:

• This is an immediate consequence of Theorems 10.7 and 9.11.

• Recall: X and Y independent ⇒ ρ(X, Y ) = 0

• In general, ρ(X, Y ) = 0 does not imply that X and Y are independent.

• However, if X and Y are jointly normal, then ρ(X, Y ) = 0 implies

independence.

Example 10.5:

◮ Suppose X and Y are independent, normally distributed RVs with mean µX =

µY = 0 and variance σ2
X and σ2

Y . Let U and V be defined via the transformation

U =
1√
2
(X − Y )

V =
1√
2
(X + Y ) (10.15)

Find ρ(X,Y ) and ρ(U, V ). ◭
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10.3 Conditional expectations

Conditional distributions (Recap):

• Let X and Y be two RVs defined on the same sample space:

• If X and Y are discrete with joint PMF p(x, y), then

pX|Y (x|y) =
p(x, y)

pY (y)
(10.16)

• If X and Y are continuous with joint PDF f(x, y), then

fX|Y (x|y) =
f(x, y)

fY (y)
(10.17)

Definition: The conditional expectation of X given Y = y is defined as

E(X|Y = y) =







∑

i

xi pX|Y (xi|y) in the discrete case

∞∫

−∞
x fX|Y (x|y) dx in the continuous case

(10.18)

Remarks:

• Conceptually, E( . |Y = y) is similar to the conventional expectation

E( . ), except that it is based on conditional PMF or PDF.

• All the properties of E(.) extend to E( . |Y = y)
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Theorem 10.8:

E(X) =







∑

i

E(X|Y = yi) pY (yi) discrete case

∞∫

−∞
E(X|Y = y) fY (y) dy continuous case

(10.19)

Proof (continuous case): From Theorem 10.1, equation (10.3), we have

E(X) =

∫ ∞

−∞

∫ ∞

−∞
x f(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
x fX|Y (x|y) fY (y) dx dy

=

∫ ∞

−∞

(∫ ∞

−∞
x fX|Y (x|y) dx

)

fY (y) dy

=

∫ ∞

−∞
E(X|Y = y) fY (y) dy � (10.20)

Remark: Theorem 10.8 is very useful when:

• the direct evaluation of E(X) is not trivial

• but E(X|Y = y) may be computed easily
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Special notation:

• Let h(y) , E(X|Y = y), so that Theorem 10.8 may be expressed as

E(X) =

∫

h(y)fY (y) dy = E(h(Y )) (10.21)

• Now, introducing the notation E(X|Y ) , h(Y ), Theorem 10.8 can be

written compactly as

E(X) = E(E(X|Y )) (10.22)

• This notation may appear confusing at first, but it is often used.

Example 10.6:

◮ The number of people who pass by a store during lunch time (say form 12:00

to 13:00) is a Poisson RV with parameter λ = 100. Assume that each person

may enter the store, independently of the other people, with a given probability

p = .15. What is the expected number of people who enter the store during lunch

time?

Solution: Define the following RVs:

X = number of people entering the store

Y = number of people passing by

RV Y is Poisson with parameter λ = 100:

pY (y) = P (Y = y) =

{
λy

y!
e−λ, y = 0, 1, 2, . . .

0, otherwise

Given Y = y, RV X is B(y, p) and therefore:

E(X|Y = y) = yp

Finally, applying Theorem 10.8, we obtain:

E(X) =
∞∑

y=0

E(X|Y = y)pY (y) =
∞∑

y=0

yp
λy

y!
e−λ

= p e−λ

∞∑

y=1

λy

(y − 1)!
= p λ e−λ

∞∑

y=0

λy

y!

= p λ = 0.15 × 100 = 15

◭
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Chapter 11

Multivariate distributions

Introduction:

• In engineering applications of probability, we often have to deal with

several RVs (i.e. more than 2). Examples of this include the design

and analysis of: digital receivers, speech recognition systems, routing

algorithms for packet networks, etc.

• In Chapters 9 and 10, we developed probability models and techniques

for the solution of problems involving two random variables jointly de-

fined over a common sample space.

• In this chapter, we extend these concepts to the case of multiple (say

n ≥ 2) random variables. The developments are conceptually simple but

the notation is at times a bit tedious.

• We also discuss briefly the multivariate normal distributions, which find

several important applications in science and engineering.

284
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11.1 Probability functions

Joint CDF:

• Let X1, X2, ..., Xn be n RVs defined on the same sample space.

• The joint CDF of X1, . . . , Xn is defined as

F (x1, x2, ..., xn) , P (X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn) (11.1)

• Some of the most important properties of the joint CDF:

(a) F (x1, x2, ..., xn) is non-decreasing in each of its arguments.

(b) F (x1, x2, ..., xn) is right-continuous in each of its arguments.

(c) For any particular i, (all other coordinates being fixed)

lim
xi→−∞

F (x1, x2, ..., xn) = 0 (11.2)

(d) In the limit xi → ∞ for all i, F (x1, x2, ..., xn) → 1, i.e.:

F (∞, ...,∞) = 1 (11.3)

• The marginal CDF of Xi is obtained by letting xj → ∞ for all j 6= i:

FXi
(xi) = lim

xj→∞
all j, j 6=i

F (x1, x2, ..., xn) (11.4)
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Joint PMF:

• Suppose that RVs Xi (i = 1, ..., n) are discrete with set of possible values

Ri, respectively.

• The joint PMF of X1, . . . , Xn is defined as

p(x1, x2, ..., xn) , P (X1 = x1, X2 = x2, ..., Xn = xn) (11.5)

• Some of the most important properties of the joint PMF:

(a) p(x1, x2, ..., xn) ≥ 0.

(b) If for some i, xi /∈ Ri, then p(x1, x2, ..., xn) = 0

(c) Normalization:

∑

x1∈R1

. . .
∑

xn∈Rn

p(x1, x2, ..., xn) = 1 (11.6)

• The marginal PMF of Xi is obtained by summing over all possible values

of xj, for all j 6= i:

pXi
(xi) =

∑

xj∈Rj
all j, j 6=i

p(x1, x2, ..., xn) (11.7)
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Joint PDF:

• We say that Xi are jointly continuous RVs if there exists an integrable

function f : Rn → [0,∞), called the joint PDF, such that for any region

D ⊆ Rn:

P ((X1, . . . , Xn) ∈ D) =

∫

. . .

∫

D

f(x1, . . . , xn) dx1 . . . dxn (11.8)

• The following properties follow from the above definition:

(a) f(x1, . . . , xn) ≥ 0

(b) Normalization:
∫ ∞

−∞
. . .

∫ ∞

−∞
f(x1, . . . , xn) dx1 . . . dxn = 1 (11.9)

• Relationships between the joint PDF and joint CDF:

f(x1, . . . , xn) =
∂nF (x1, . . . , xn)

∂x1 . . . ∂xn
(11.10)

F (x1, . . . , xn) =

∫ x1

−∞
dt1 . . .

∫ xn

−∞
dtn f(t1, . . . , tn) (11.11)

• The marginal PDF of Xi is obtained by integrating over all xj, j 6= i:

fXi
(xi) =

∫ ∞

−∞
. . .

∫ ∞

−∞
f(x1, . . . , xn) dx1 . . . dxn︸ ︷︷ ︸

omit dxi

(11.12)

where the integration is (n− 1)-fold.
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Example 11.1:

◮ Random variables X, Y and Z are uniformly distributed over the sphere D =

{(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}. That is

f(x, y, z) =

{

k, (x, y, z) ∈ D

0, otherwise.

(a) Find the constant k.

(b) Find the probability that P (Z > 0).

(c) More generally, find P (aX + bY + cZ > 0) for any real numbers a, b and c.

Solution: (a) Using the normalization condition (11.9):

∫∫∫

R3

f(x, y, z) dx dy dy = k

∫∫∫

D

dx dy dy = kVol(D) = 1

which implies

k =
1

Vol(D)
=

3

4π

(b) Define E = {(x, y, z) ∈ R3 : z > 0}. We seek

P (Z > 0) =

∫∫∫

E

f(x, y, z) dx dy dz

= k

∫∫∫

E∩D

dx dy dz

=
Vol(E ∩D)

Vol(D)
=

1

2

(c) The answer is also 1/2... ◭
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11.2 Conditional distributions and independence

Conditional distributions:

• The material of Section 9.4 on conditional distributions can also be ex-

tended to the multivariate case.

• Without loss of generality, suppose we are interested in the conditional

distribution of RVs X1, . . . , Xk, given the knowledge of the remaining

n− k variables, i.e. Xk+1, . . . , Xn.

• In the discrete case, we define the conditional PMF as follows:

pX1...Xk|Xk+1...Xn
(x1, ..., xk |xk+1, ..., xn) =

p(x1, ..., xn)

pXk+1...Xn
(xk+1, ..., xn)

(11.13)

where the denominator is assumed to be non-zero. For given values of

xk+1, ..., xn, the above conditional PMF is a valid PMF in k dimensions.

• In the continuous case, we define the conditional PDF as follows:

fX1...Xk|Xk+1...Xn
(x1, ..., xk |xk+1, ..., xn) =

f(x1, ..., xn)

fXk+1...Xn
(xk+1, ..., xn)

(11.14)

For given values of xk+1, ..., xn, (11.14) is a valid PDF in k dimensions.

For example, in the case of 3 RVs, say X, Y and Z, we have

fX|Y Z(x|y, z) =
f(x, y, z)

fY Z(y, z)
≥ 0,

where we assume fY Z(y, z) > 0, and
∫ ∞

−∞
fX|Y Z(x|y, z) dx = 1.
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Independence:

• We say that RVs X1, . . . , Xn are independent iff for any real number

subsets Ai ⊆ R (i = 1, . . . , n), the events {X1 ∈ A1},. . . ,{Xn ∈ An} are

mutually independent. This implies:

P (X1 ∈ A1, . . . , Xn ∈ An) = P (X1 ∈ A1) . . . P (Xn ∈ An) (11.15)

• It can be shown that discrete RVs X1, . . . , Xn are independent iff

p(x1, . . . , xn) = pX1
(x1) . . . pXn

(xn) (11.16)

• Similarly, continuous RVs X1, . . . , Xn are independent iff

f(x1, . . . , xn) = fX1
(x1) . . . fXn

(xn) (11.17)
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Example 11.2:

◮ You buy n identical memory chips. Let Xi ≥ 0 denote the lifetime of the ith chip.

Assuming that the RVs Xi are independent and identically distributed, find the

probability that the chip #1 outlasts all the others.

Solution: Define the event

A = { chip #1 outlasts all the others }

Intuitively, since the chips are identical, we should have P (A) = 1/n. Let us

verify that this is indeed the case. Assuming that the RVs Xi are independent

and identically distributed (i.i.d.), we have

f(x1, . . . , xn) = fX(x1) . . . fX(xn)

where fX(.) denotes the common marginal PDF of the individual RVs. Note here

that fX(x) = 0 for x < 0. We seek

P (A) = P (X1 ≥ X2, X1 ≥ X3, . . . , X1 ≥ Xn)

=

∫ ∞

0

dx1

∫ x1

0

dx2 . . .

∫ x1

0

dxn f(x1, . . . , xn)

=

∫ ∞

0

dx1fX(x1)

(∫ x1

0

dy fX(y)

)n−1

=

∫ ∞

0

dx1 fX(x1) (FX(x1))
n−1

where FX(x) is the CDF associated to fX(x). To evaluate the integral, we make

the following change of variables:

u = FX(x1), du = fX(x1) dx1

The new limits of integration become FX(0) = P (X ≤ 0) = 0 and FX(∞) = 1.

Therefore:

P (A) =

∫ 1

0

un−1du =
un

n

∣
∣
∣
∣

1

0

=
1

n

Interestingly, we could solve this problem without knowing the explicit form of

fX(x), the common PDF of the lifetime RVs Xi. ◭
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11.3 Transformation of multiple RVs

Transformation theorem:

• The transformation theorem admits a direct extension to Rn.

• Let RVs U1, . . . , Un be defined in terms of X1, . . . , Xn via

(U1, . . . , Un) = h(X1, . . . , Xn)

where h : Rn → Rn.

• For any (u1, . . . , un) ∈ Rn, let (x1i, . . . , xni) denote the ith distinct root

of the equation (u1, . . . , un) = h(x1, . . . , xn).

• The joint PDF of U1, . . . , Un is given by

g(u1, . . . , un) =
∑

i

f(x1i, . . . , xni)|Ji| (11.18)

where

Ji = det







∂x1i

∂u1
... ∂x1i

∂un

... . . . ...
∂xni

∂u1
... ∂xni

∂un







(11.19)

• In (11.18), the sum is over all the roots (x1i, . . . , xni). If for a given point

(u1, . . . , un) ∈ Rn there is no such root, than g(u1, . . . , un) = 0.

Example 11.3:

◮ Let X, Y and Z be independent and identically (iid) distributed RVs with com-

mon N(0, 1) PDF. Find the joint PDF of corresponding spherical coordinates:

R =
√
X2 + Y 2 + Z2

Φ = ∠(X,Y )

Θ = ∠(
√
X2 + Y 2, Z)

◭
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11.4 Multivariate expectations

Introduction:

• Recall the definition of the expectation of a single random variable Y :

E(Y ) =

∫ ∞

−∞
yfY (y) dy

where fY (y) denotes the PDF of Y . In the special case where Y is

discrete RV with set of possible values RY , this reduces to

E(Y ) =
∑

y∈RY

y pY (y)

where pY (y) denotes the DPF of Y .

• Let RVs X1, . . . , Xn be defined over the same sample space. In this

Section, we are interested in evaluating E(Y ) when Y is a of function

X1, . . . , Xn, say

Y = h(X1, . . . , Xn)

• As before, we focus on two special cases of interest:

- RVs Xi (i = 1, . . . , n) are discrete with sets of possible values RXi
,

respectively, and joint PMF p(x1, . . . , xn).

- RVs Xi are continuous with joint PDF f(x1, . . . , xn).
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Theorem 11.1: Let Y = h(X1, . . . , Xn). Then E(Y ) = E(h(X1, . . . , Xn)) may

be expressed in one of the following forms:

(a) In the discrete case,

E(Y ) =
∑

x1

...
∑

xn

h(x1, . . . , xn)p(x1, . . . , xn) (11.20)

(b) In the continuous case,

E(Y ) =

∫ ∞

∞
...

∫ ∞

∞
h(x1, . . . , xn)f(x1, . . . , xn)dx1 . . . dxn (11.21)

Remark: According to this Theorem, it is not necessary to know fY (y)

(or pY (y)) explicitly to compute the expected value of Y = h(X1, . . . , Xn).

Knowledge of the joint PDF f(x1, . . . , xn) (or joint PMF) is sufficient. The

proof of the theorem is beyond the scope of this course.

Corollary:

(a) E(
∑n

i=1 αihi(X1, ..., Xn)) =
∑n

i=1 αiE(hi(X1, ..., Xn))

(b) E(
∑n

i=1 αiXi) =
∑n

i=1 αiE(Xi)

(c) E(X1 +X2 + ...+Xn) = E(X1) + ...+ E(Xn)
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Proof: In the continuous case, (a) is obtained via the application of (11.21)

as follows:

E(
n∑

i=1

αihi(X1, ..., Xn)) =

∫ ∞

∞
...

∫ ∞

∞
(
n∑

i=1

αihi(x1, ..., xn))f(x1, ..., xn)dx1...dxn

=
n∑

i=1

αi

∫ ∞

∞
...

∫ ∞

∞
hi(x1, ..., xn)f(x1, ..., xn)dx1...dxn

=
n∑

i=1

αiE(hi(x1, ..., xn))

(b) is obtained as a special case of (a) with hi(X1, ..., Xn) = Xi, while (c) is

a special case of (b) with αi = 1 �.

Example 11.4:

◮ A fair die is rolled 10 times. Let Y denote the sum of the resulting outcomes.

Find E(Y ).

Solution: Let RV Xi, with set of possible values Ri = {1, . . . , 6}, denote the

outcome of the ith roll (i = 1, ..., 10). Since the die is fair,

E(Xi) =
6∑

k=1

k
1

6
=

1

6
· 6 · 7

2
= 3.5

Here, we have

Y =
10∑

i=1

Xi

Therefore, according to the Corollary,

E(Y ) =
10∑

i=1

E(X1) = 10 · 3.5 = 35

◭
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Example 11.5:

◮ A complex parallel computing system is made up of n circuit boards connected

by a fast bus. Each board contains two identical CPU chips that must both be

non-defective for the circuit board to operate properly. What is the expected

number of operational circuit boards after m CPU chips have gone defective? ◭

Theorem 11.2: Suppose RVs X1, . . . , Xn are independent. Let hi : R → R be

arbitrary functions of the real variable. Then

E(h1(X1) . . . hn(Xn)) = E(h1(X1)) . . . E(hn(Xn)) (11.22)

Corollary: If X1, . . . , Xn are independent, we have

E(X1X2 . . . Xn) = E(X1)E(X2) . . . E(Xn) (11.23)
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11.5 Variance and covariance

Introduction:

• Previously given definitions of the variance of a single RV and the co-

variance of two jointly distributed RVs still apply in the multivariate

framework.

• In particular, if X1, . . . , Xn are jointly distributed RVs with respective

means µ1, . . . , µn, then

V ar(Xi) = E[(Xi − µi)
2]

Cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)]

• All the previously derived properties of the variance and covariance re-

main valid in the multivariate context. In particular:

◦ Cov(Xi, Xj) = E(XiXj) − µiµj

◦ Xi and Xj independent implies Cov(Xi, Xj) = 0

• Generally, and in the same way as in Chapter 10, we say that RVs Xi

and Xj (i 6= j) are uncorrelated if

Cov(Xi, Xj) = 0

Thus independence implies uncorrelatedness but the converse is not true

in general.
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• For future reference, we also note the following result: If RVsX1, X2, ..., Xn

are uncorrelated, then

Cov(Xi, Xj) =







V ar(Xi), if i = j

0, otherwise
(11.24)

Theorem 11.3:

V ar(
n∑

i=1

Xi) =
n∑

i=1

V ar(Xi) + 2
n∑

i=1

n∑

j=i+1

Cov(Xi, Xj) (11.25)

Remarks:

• From (11.24), we note that if the RVs Xi (i = 1, . . . n) are uncorrelated,

that is if Cov(Xi, Xj) = 0 for all i 6= j, then

V ar(X1 + · · · +Xn) = V ar(X1) + · · · + V ar(Xn) (11.26)

• Clearly, this is the case when RVs X1, X2, ..., Xn are independent.
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Example 11.6:

◮ A fair die is rolled 10 times. Let Y denote the sum of the resulting outcomes.

Find V ar(Y ).

Solution: Let RV Xi, with possible values {1, . . . , 6}, denote the outcome of the

ith roll (i = 1, ..., 10). Since the die is fair,

E(Xi) =
6∑

k=1

k
1

6
= 3.5

E(X2
i ) =

6∑

k=1

k2 1

6
=

87

6
= 14.5

V ar(Xi) = E(X2
i ) − (E(Xi))

2 = 2.25

Here, Y =
∑10

i=1
Xi. Since the RVs Xi are independent, (11.26) can be applied

and we obtain

V ar(Y ) =
10∑

i=1

V ar(Xi) = 22.5

◭

Example 11.7:

◮ Let X1, . . . , Xn be independent RVs with common mean µX and variance σ2
X .

Find the mean and variance of their sample mean, defined as

Y ,
1

n
(X1 + · · · +Xn) (11.27)

◭
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Chapter 12

Limit Theorems

Suppose we flip a fair coin a large number of times, say n. Let η(H,n)

denote the number of trials, out of n, in which heads is observed. Intuitively,

we know that for n large, the relative frequency

η(H,n)

n
≈ 1

2

Let the outcome of the ith flip be represented by the RV

Xi =







1, if heads

0, if tails

The RVs X1, . . . , Xn are independent with common mean µ = E(Xi) = 1/2.

Also note that X1 + · · · + Xn = η(H,n). Thus, (12.1) may be expressed in

the equivalent form
1

n

n∑

i=1

Xi ≈ µ.

provided n is large.
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More generally, consider a collection of n independent RVs, say Xi (i =

1, 2, ..., n), with common mean µ = E(Xi) and variance σ2. It has been

observed in many practical situations that the so-called sample mean

X̄n =
1

n

n∑

i=1

Xi → µ as n→ ∞ (12.1)

More strikingly, as n gets larger, the distribution of the sample mean X̄n is

seen to approach that of a normal RV with mean µ and variance σ2/n.

This type of regularity in the observed behavior of the sample mean and

other related averages, as the number of repeated trials becomes increasingly

large, provides the main motivation and justification for the development and

application of modern probability theory. For example, it plays a central role

in the development of statistical techniques of data analysis.

In this Chapter, we investigate the asymptotic behavior of the sample means

and related averages, including the relative frequency. We show that the

observed regularity of these quantities can be explained as a natural conse-

quence of the concepts of independence and/or uncorrelatedness within the

axiomatic framework of probability.

The main results of the Chapter take the form of so-called limit theorems

that describe the behavior of these averages as the number of trials, say n,

gets increasingly large. The theorems also provide a precise meaning for the

type of convergence exhibited by these averages.
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12.1 Some basic inequalities

Theorem 12.1 (Markov’s inequality): Let X be a non-negative RV; that is,

the PDF of X, f(x), satisfies f(x) = 0 for x < 0. Then, for any t > 0,

P (X ≥ t) ≤ E(X)

t
(12.2)

Proof: Because of the assumed property of f(x), we have:

E(X) =

∫ ∞

0

x f(x) dx

≥
∫ ∞

t

x f(x) dx

≥ t

∫ ∞

t

f(x) dx = t P (X ≥ t) �

Remarks: Markov’s inequality provides a rough bound on P (X ≥ t). Clearly,

it is useful only for values of t larger than E(X).

Example 12.1:

◮ Consider the transmission of several 10Mbytes files over a noisy channel. Suppose

that the average number of erroneous bits per transmitted file at the receiver

output is 103. What can be said about the probability of having ≥ 104 erroneous

bits during the transmission of one of these files?

Solution: Let X denote number of erroneous bits in a given file transmission.

We know that E(X) = 103. We want P (X ≥ 104), but we don’t know the PDF

of X. We can use Markov’s inequality to obtain an upper bound on the desired

probability:

P (X ≥ 104) ≤ E(X)

104
= 10−1 (12.3)

◭
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Theorem 12.2 (Chebyshev’s inequality): Let X be a RV with expected value

µ and variance σ2. Then for any real number t > 0,

P (|X − µ| ≥ t) ≤ σ2

t2
(12.4)

Proof: Introduce RV Z = X−µ
σ ; that is, Z is the standardized X as defined

in (8.17). Clearly, |X − µ| ≥ t if and only if Z2 ≥ t2/σ2. Applying Markov’s

inequality to non-negative RV Z2, we then have

P (|X − µ| ≥ t) = P (Z2 ≥ t2

σ2
) ≤ E(Z2)

t2/σ2
=
σ2

t2
(12.5)

where the last equality follows because E(Z2) = 1. �

Remarks:

• The LHS in (12.4) represents the probability that X deviates from its

mean µ by t or more. According to (12.4), this probability is upper

bounded by σ2/t2, which decays to zero as t gets larger.

• Alternatively, setting t = kσ in (12.4), we obtain

P (|X − µ| ≥ kσ) ≤ 1

k2
(12.6)

Example 12.2:

◮ Let X ∼ N(0, 1) (i.e. standard normal). Using the table of the standard normal

CFD, compute P (|X| ≥ t) for t = 1, 2, 3 and compare the results to Chebyshev

inequality. ◭

c© 2003 Benôıt Champagne Compiled September 12, 2006



12.2 Law of large numbers 304

12.2 Law of large numbers

Definition: We define the sample mean of RVs X1, . . . , Xn as

X̄n =
1

n
(X1 +X2 + · · · +Xn) (12.7)

Theorem 12.3: Suppose Xi (i = 1, . . . , n) are uncorrelated with common

mean µ and variance σ2. The mean and variance of X̄n are then given by

E(X̄n) = µ, V ar(X̄n) =
σ2

n
(12.8)

Proof: For the expected value, we have,

E(X̄n) =
1

n
E(X1 + · · · +Xn)

=
1

n
[E(X1) + · · · + E(Xn)]

=
1

n
nµ = µ

Since the RVs Xi are uncorrelated, we have Cov(Xi, Xj) = 0 for i 6= j. Then,

the variance may be computed as follows:

V ar(X̄n) =
1

n2
V ar(X1 + · · · +Xn)

=
1

n2
[V ar(X1) + · · · + V ar(Xn)]

=
1

n2
nσ2 =

σ2

n

where the second line follows from (11.25). �
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Remarks:

• The sample mean, as defined in (12.7), is equivalent to the arithmetic

average of the RVs Xi.

• Think of the RVs Xi as independent measurements of a physical quan-

tity, with mean µ representing the true (usually unknown) value of this

quantity, and σ2 representing the variance of the measurement error.

• We note from (12.8) that the expected value of the sample mean is equal

to the true mean. Accordingly, we say that the sample mean X̄n is an

unbiased estimator of µ.

• We also note from (12.8) that increasing the number n of independent

measurements reduces the variance of the sample mean.

• The above desirable properties are consistent with the intuitive notion of

repeating and averaging over several measurements to reduce, or smooth

out the effects of the measurement errors.

Theorem 12.4: Let Xi (i = 1, 2, ..) be a sequence of uncorrelated RVs with

common mean µ = E(Xi) and variance σ2 = V ar(Xi) <∞. For any ǫ > 0,

lim
n→∞

P ( | X̄n − µ | < ǫ ) = 1 (12.9)

where X̄n denote the sample mean (12.7).
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Proof: From (12.8), the mean and variance of X̄n are given by µ and σ2/n,

respectively. Thus, applying Chebyshev’s inequality (12.4) to X̄n, we have

that for any ǫ > 0,

0 ≤ P (|X̄n − µ| ≥ ǫ) ≤ σ2

nǫ2
(12.10)

Finally, taking the limit on both sides as n→ ∞, we obtain:

lim
n→∞

P (|X̄n − µ| ≥ ǫ) = 0

which is equivalent to (12.9). �

Discussion:

• Theorem 12.4 is called the weak law of large numbers (WLLN).

• The WLLN (12.9) admits the following interpretation: for large n, it is

very likely that the sample mean X̄n is close to µ, that is,

P (µ− ǫ ≤ X̄n ≤ µ+ ǫ) → 1 as n→ ∞ (12.11)

regardless of how small ǫ is.

• The WLLN provides a theoretical basis for using the sample mean X̄n as

an estimate of µ in statistics. It can also be used to justify the relative

frequency interpretation of probability (see next Section).

• Several more sophisticated variations of this result do exist. An example

is the so-called strong law of large number (SLLN):

P ( lim
n→∞

X̄n = µ ) = 1 (12.12)

which is applicable whenever the RVs Xi are independent.
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12.3 Relative frequency interpretation of probability

Relative frequency:

• Consider n independent repetitions of the same random experiment

(e.g. rolling a die n times).

• Let A denote an event that may or nor occur at each repetition

(e.g. the die shows 5 or 6)

• Let η(A, n) denote number of occurrences of event A in n repetitions.

The ratio
η(A, n)

n
(12.13)

is called the relative frequency of event A.

Discussion:

• Historically, it has been observed that

n(A)

n
→ constant as n→ ∞ (12.14)

• This has motivated earlier definitions of the probability of A, namely:

P (A) = lim
n→∞

n(A)

n
(12.15)

• Below, we use the WLLN (Theorem 12.4) to reconcile this earlier defin-

ition of probability with the modern axiomatic definition.
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Theorem 12.5: Consider n independent repetitions of a random experiment

in which event A has been identified. For any ǫ > 0, we have

lim
n→∞

P ( | η(A, n)

n
− P (A) | < ǫ ) = 1 (12.16)

Proof: Define RVs Xi (i = 1, 2, ...) as follows:

Xi =







1, if A occurs at ith repetition

0, if not

These RVs are independent (thus uncorrelated) with common mean

µ = E(Xi) = 1 · P (A) + 0 · P (Ac) = P (A)

and finite variance. Observe that

X̄n =
1

n
(X1 + ...+Xn) =

η(A, n)

n

Applying the WLLN (Theorem 12.4), we have:

lim
n→∞

P (|X̄n − µ| < ǫ) = lim
n→∞

P (|η(A, n)

n
− P (A)| < ǫ) = 1 �

Remarks: Since ǫ > 0 can be taken as small as we want, it is very likely that

the relative frequency η(A, n)/n is close to P (A) for n sufficiently large.
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12.4 Central limit theorem

Lemma 12.6: Suppose RVs X1, X2, . . . , Xn are independent with character-

istic functions ψ1(ω), ψ2(ω), . . . , ψn(ω), respectively. The characteristic func-

tion of Y = X1 +X2 + · · · +Xn is given by the product

ψY (ω) = ψ1(ω)ψ2(ω) . . . ψn(ω) (12.17)

Proof: From the definition (8.19) of the CF, we have:

ψY (ω) = E(e−jωY )

= E(e−jω(X1+X2+···+Xn))

= E(e−jωX1e−jωX2 . . . e−jωXn) (12.18)

Making use of Theorem 11.2, we obtain

ψY (ω) = E(e−jωX1)E(e−jωX2) . . . E(e−jωXn)

= ψ1(ω)ψ2(ω) . . . ψn(ω) � (12.19)

Interpretation:

• Recall that the PDF of Y , say fY (y), can be obtained as the inverse

Fourier transform of ψY (ω). Similarly, the PDF of Xi (i = 1, . . . , n), say

fi(x), can be obtained as the inverse Fourier transform of ψi(ω).

• Therefore, applying the inverse Fourier transform operator on both sides

of (12.17), we obtain

fY = f1 ∗ f2 ∗ · · · ∗ fn (12.20)

where ∗ denotes the convolution.
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Example 12.3:

◮ Suppose RVs X1, X2, . . . , Xn are independent and identically distributed with

common marginal PDF

f(x) =

{

1, |x| < 1/2

0, otherwise.

Sketch the PDF of the sum Y = X1 +X2 + · · · +Xn for n = 1, 2, 4.

Solution: ◭
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Theorem 12.7: Let Xi (i = 1, 2, ...) be a sequence of independent, identically

distributed RVs with mean µ = E(Xi) and variance σ2 = V ar(Xi) < ∞.

Define

Zn =
X̄n − µ

σ/
√
n

(12.21)

In the limit n→ ∞, the distribution of Zn tends to the standard normal:

lim
n→∞

P (Zn ≤ z) =
1√
2π

∫ z

−∞
e−t

2/2 dt (12.22)

That is, Zn → N(0, 1).

Remarks:

• Theorem 12.7 is called the central limit theorem. Its proof makes use

of Lemma 12.6 but the technical details are beyond the scope of this

course.

• We often express (12.22) in the more compact form Zn → N(0, 1).

• Many phenomena occuring in nature or in man-made systems are the

results of averaging a large number of independent contributions:

- Thermal noise in radio systems.

- Measurement/observation errors.

• In such cases, Theorem 10.6 motivates the use of the normal density.
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Example 12.4: Normal approximation to the Binomial

◮ Let Y be a binomial RV with parameters N and p, that is Y ∼ B(n, p). Recall

that such a binomial RV can be expressed as a sum of independent Bernouilli

RVs Xi, that is

Y = X1 + · · · +Xn

where

Xi =

{

1 with probability p

0 with probability 1 − p.

with mean µ = E(Xi) = p and variance σ2 = V ar(Xi) = pq. Define

Zn =
X̄n − µ

σ/
√
n

=
1

n
Y − p

√
pq/

√
n

=
Y − np√
npq

According to the central limit, we expect that for n sufficiently large:

P (Zn ≤ z) = P (
Y − np√
npq

≤ z) ≈ Φ(z) (12.23)

where Φ(z) denote the CDF of the standard normal. Equivalently, we may express

(12.23) in the form

P (Y ≤ y) ≈ Φ(
y − np√
npq

) (12.24)

(12.24) is often referred to as the DeMoivre-Laplace approximation. ◭
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Chapter 13

Introduction to Random Processes

In several areas of sciences and engineering, we encounter signals (i.e. func-

tion of time) which exhibit a random behavior. That is, no deterministic

model can be used to predict the time evolution of these signals in advance

of their observation.

A typical example is provided by the digital information signals used in mod-

ern telecommunications systems. Another example is the evolution of the

value of a company’s share on the stock market.

While such signals cannot be predicted exactly in advance of their obser-

vation, they usually exhibit regularity in their behavior that can often be

exploited in the design of an engineering system or in the prediction of trends.

In this chapter, we present an introduction to such random signals, also

known as stochastic processes. We cover the following topics:

• Basic definition and general concepts;

• Stationary processes and filtering thereof;

• Poisson points processes.
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13.1 Terminology

Definition: Consider a probability space (S,F , P ). A random process is a

family of random variables, say {X(t), t ∈ T}, defined on S and indexed by

a parameter t taken from a set T ⊆ R.

Remarks:

• Recal that a random variable is a mapping from S into R. Thus, a

random process may be viewed as a function of two arguments:

(t, s) ∈ T × S → X(t, s) ∈ R (13.1)

• For a fixed value of t = to, X(to) is simply a random variable as previ-

ously defined in Chapter 5:

s ∈ S → X(to, s) ∈ R (13.2)

• For a fixed value of s = so, X(t) defines a real-valued function of the

variable t:

t ∈ T → X(t, so) (13.3)

The latter is called a sample function or realization of the process.

• This leads to an alternative interpretation of a random process as a

mapping from the sample space S into the set of all possible sample

functions, {X(., s), : s ∈ S}, also called ensemble.
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• This is illustrated in the figure below:

S

 X

s
1

s
2

s
3

X(t,s
1
)

X(t,s
2
)

X(t,s
3
)

t

t

t0

• It is a common practice in probability to omit the argument s from

X(t, s). We shall usually do so, unless it is desired to emphasize certain

aspects of the theory.

Continuous versus discrete-time processes: In many applications of random

processes, indexing parameter t as the signification of a time argument. Ac-

cordingly, we distinguish two basic types of random processes:

- Discrete-time: if the index set T is finite or countably infinite.

- Continuous-time: if the index set T is uncountably infinite.

Continuous versus discrete-state processes: The value taken by X(t) at any

given time t is called the state of the process, and the set of all such possible

values is called the state space. We classify random processes as follow:

- Discrete-state: if the state space is discrete.

- Continuous-state: if the state space is continuous.
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Example 13.1:

◮ A simple example of a random process is provided by a sequence of binary digits

(bits) at the input of a digital communications system. The value of each bit is

represented by a binary random variable X(t), where t denotes a discrete-time

index within the index set T = {0, 1, 2, . . .}. The exact relationship between index

t and the physical time depends on the bit rate. At any given time t ∈ T , RVX(t)

may take on two possible values, say 0 or 1, with probabilities P (X(t) = 1) = p

and P (X(t) = 0) = 1 − p = q. The process Xt is therefore a discrete-time,

discrete-state process. An example of a realization of X(t) is illustrated below

(the corresponding bit sequence is 10110101 . . .): ◭

0 1

1

0
t

X(t)

Example 13.2:

◮ Consider the random process defined by

X(t) = A cos(ωt+ φ), t ∈ R (13.4)

where A is a random amplitude uniformly distributed within the range [−5,+5]

volts, φ is a random phase uniformly distributed in the range [−π, π], ω denotes a

physical angular frequency in Hertz, and the parameter t denotes time in seconds.

This is an example of a continuous-time, continuous-state process. The state

space is given by the interval [−5,+5] volts and the index set is T = R. Realiza-

tions of X(t) are illustrated below:

◭
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13.2 Characterization of random processes

In the solution of problems involving random processes, it is important to

characterize the latter so that relevant probabilities and/or moments can be

computed. Several types of characterization exist; they vary in their level of

refinement.

Definition: The nth-order CDF of random process X(t) is a function of 2n

arguments defined as:

FX(x1, . . . , xn; t1, . . . , tn) = P (X(t1) ≤ x1, . . . , X(tn) ≤ xn) (13.5)

where xi ∈ R and ti ∈ T , for i = 1, . . . , n.

Complete Characterization: We say that we have a complete characterization

of the process X(t) if the nth order CDF (13.5) is known for all positive

integers n ∈ N.

Remark:

• In general, it is not possible to obtain such a complete characterization

for an arbitrary process X(t).

• Often, we must content ourselves with so-called partial characterizations,

such as the second-moment characterization introduced below.
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Definition: The mean, autocorrelation and autocovariance functions of process

X(t) are respectively defined as

µX(t) , E[X(t)] (13.6)

RX(t, u) , E[X(t)X(u)] (13.7)

KX(t, u) , Cov(X(t), X(u)) (13.8)

Properties: The following properties of the autocorrelation function follow

from its definition:

RX(t, u) = RX(u, t) (13.9)

RX(t, t) = E[X(t)2] (13.10)

For the autocovariance, we have:

KX(t, u) = KX(u, t) (13.11)

KX(t, u) = RX(t, u) − µX(t)µX(u) (13.12)

KX(t, t) = V ar(X(t)) , σ2
X(t) (13.13)

|KX(t, u)| ≤ σX(t)σX(u) (13.14)

Second-moment characterization: Knowledge of the mean function µX(t) and

the autocorrelation function RX(t, u) for all possible values of t and u in the

index set T provides a second moment characterization of the process X(t).
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Remarks: In many applications, a second-moment characterization is ade-

quate to answer most questions of practical interest. For certain types of

process, like the Gaussian process, it is actually possible to derive a complete

characterization from the 2nd-moment one. These facts motivate the use of

the second-moment characterization.

Example 13.3:

◮ Consider the binary random process X(t) in example 13.1. Find the mean func-

tion µX(t). Assuming that each bit in the processX(t) is independently generated

from the others, find the autocorrelation and autocovariance functions of X(t).

Solution: Here, X(t) = 1 with probability p and X(t) = 0 with probability

q = 1 − p. The mean function is obtained as

µX(t) = E[X(t)] = 1 · p+ 0 · q = p

When evaluating the autocorrelation function, we distinguish 2 cases: If t = u,

we have

RX(t, t) = E[X(t)2] = 12 · p+ 02 · q = p

If t 6= u, X(t) and X(u) are independent, so that

RX(t, u) = E[X(t)X(u)] = E[X(t)]E[X(u)] = p2

For the autocovariance function, we have

KX(t, u) = RX(t, u) − µX(t)µX(u)

=

{

p q if t = u

0 if t 6= u
(13.15)

◭

Example 13.4:

◮ Consider the process

X(t) = A cos(2πft), t ∈ R (13.16)

where A is a normally distributed random amplitude with zero-mean and stan-

dard deviation 1 volt, f denotes a fixed frequency in Hertz, and t denotes time

in seconds. Find µX(t), RX(t, u) and KX(t, u). ◭
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13.3 Wide sense stationary processes

Scope: In this section, it is assumed that X(t) is a continuous-time process

with index set T = R.

Definition: Process X(t) is said to be strict-sense stationary (SSS) if for all

integer n, its nth-order CDF is unaffected by a shift of the time origin. That

is, for all n ∈ N, and for all xi and ti in R, we have

FX(x1, . . . , xn; t1 + τ, . . . , tn + τ) = FX(x1, . . . , xn; t1, . . . , tn) (13.17)

for any possible value of the time shift τ .

Definition: Process X(t) is said to be wide-sense stationary (WSS) if

(a) the mean function µX(t) is constant, that is: µX(t) ≡ µX

(b) the autocorrelation function RX(t, u) is only a function of t− u:

RX(t, u) ≡ RX(t− u) (13.18)

Remarks:

• We often refer to the difference τ = t−u as the lag and use the notation

RX(τ) for the autocorrelation function.

• SSS implies WSS but not vice versa, except for certain special types of

processes. WSS is easier to deal with than SSS.
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Properties: The following properties of the autocorrelation function can be

demonstrated:

RX(τ) = E[X(t)X(t− τ)], for any t ∈ R (13.19)

RX(0) = E[X(t)2] ≥ 0 (13.20)

RX(τ) = RX(−τ) (13.21)

|RX(τ)| ≤ RX(0) (13.22)

Remark: Think of X(t) as a voltage signal applied across a 1 ohm resistor.

Then X(t)2 represents the instantaneous power dissipated through the resis-

tor at time t. According to (13.20), the expected value of the instantaneous

power is constant over time (due to WSS assumption) and equal to RX(0).

Example 13.5:

◮ Consider the process

X(t) = A cos(ωt) +B sin(ωt), t ∈ R

where A and B are independent random variables with zero-mean and common

variance σ2. Show that X(t) is WSS.

Solution: ◭
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Definition: The power spectral density (PSD) of processX(t), denoted SX(ω),

is defined as the Fourier transform of its autocorrelation function RX(τ):

SX(ω) =

∫ ∞

−∞
RX(τ)e−jωτdτ, ω ∈ R (13.23)

Remarks:

• Clearly, if SX(ω) is know, then RX(τ) can be recovered by applying the

inverse Fourier transform:

RX(τ) =
1

2π

∫ ∞

−∞
SX(ω)ejωτdω, τ ∈ R (13.24)

• Equations (13.24)-(13.25) are often referred to as the Wiener-Khinchin

relations.

Properties: SX(ω) satisfies the following basic properties:

(a) SX(ω) is real and non-negative, that is: SX(ω) ≥ 0

(b) SX(ω) is an even function of ω: SX(ω) = SX(−ω)

(c) The average instantaneous power in X(t) can be obtained as

RX(0) =
1

2π

∫ ∞

−∞
SX(ω)dω (13.25)

c© 2003 Benôıt Champagne Compiled September 12, 2006



13.3 Wide sense stationary processes 323

Remarks:

• The power spectral density SX(ω) derives its name from (13.25), where

it is seen that the total average instantaneous power can be obtained by

integrating SX(ω) over all frequencies.

• Accordingly, S(ω) has the units of power per Hertz and the product

SX(ω)dω/2π represents the amount of power in a frequency band of

width dω.

• The PSD is particularly useful as it makes it possible to study WSS

processes directly in the frequency domain.

Example 13.6:

◮ Consider the process

X(t) = A cos(ω0t) +B sin(ω0t)

where A and B are uncorrelated RVs with zero-mean and common variance σ2,

and ω0 is a fixed angular frequency. Find the PSD of X(t).

Solution:

◭
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Definition: We say that W (t) is a white noise process if it is WSS with

zero-mean, i.e. µW = 0, and autocorrelation function

RW (τ) = Nδ(τ) (13.26)

where N is a positive constant and δ(τ) is the (continuous-time) unit impulse

function.

Remarks:

• Taking the Fourier transform of (13.26), we obtain

SW (ω) = N (13.27)

which reveals that a white noise process has a constant PSD for all

frequency values (hence the name).

• In communications engineering and statistical physics, white noise is

often used to model random signal fluctuations whose frequency content

extends beyond that of the signal of interest (e.g. thermal noise).

Example 13.7:

◮ Find the PSD of the signal

Y (t) = X(t) +W (t)

where X(t) is defined as in example 13.6 and W (t) is a white noise with constant

PSD N . Assume that RVs A, B and W (t) (for any t) are mutually independent.

◭
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13.4 Filtering of WSS processes

Recap on LTI systems:

• A system is broadly defined as a device or physical process that trans-

forms a time-domain signal applied to its input, say x(t), into a corre-

sponding output signal say y(t):

System H

x(t) y(t)

input output

• A system H is represented mathematically as a mapping between a set

of input signals and a set of output signals. Accordingly,

y(t) = H{x(t)} (13.28)

For now, let us assume that the signals of interest are deterministic

real-valued, signals defined for all t ∈ R (i.e. continuous-time).

• We say that system H is linear iff, for any numbers a1 and a2 and any

input signals x1(t) and x2(t), we have

H{a1x1(t) + a2x2(t)} = a1y1(t) + a2y2(t) (13.29)

• We say that system H is time-invariant iff, for any t0 ∈ R, we have

H{x(t− t0)} = y(t− t0) (13.30)

• A system H is said to be LTI if it is both linear and time-invariant.
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• If H is LTI, it is possible to show that (13.28) reduces to

y(t) =

∫ ∞

−∞
h(u)x(t− u)du , h(t) ∗ x(u), (13.31)

also known as a convolution integral.

• In (13.31), h(t) is the so-called impulse response of the system, i.e.:

h(t) = H{δ(t)} (13.32)

The Fourier transform of h(t), that is

H(ω) =

∫ ∞

−∞
h(t)e−jωtdt, (13.33)

is known as the frequency response of the system.

• Here, we shall assume that the systems under consideration have ab-

solutely integrable impulse responses (i.e. stable systems), so that H(ω)

in (13.33) is well defined. Furthermore, to simplify the discussion, we

assume that h(t) ∈ R.

Discussion:

• In introductory courses on signals and systems, the class of inputs is

usually restricted to deterministic signals.

• Here, we extend the above concepts and consider systems that operate

on random signals. We focus on WSS signals, for which the concept of

frequency is particularly meaningful.
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Problem formulation:

• Let X(t) denote a WSS process applied to the input of an LTI system

with impulse respone h(t). Let Y (t) denote the corresponding output:

Y (t) =

∫ ∞

−∞
h(u)X(t− u)du (13.34)

Note that because X(t) is a random process, so is the output Y (t).

• We are interested in determining the effects of filtering WSS processX(t)

with LTI filter h(t). More precisely, we seek to develop a second-moment

characterization for the output process Y (t).

• In these developments, the key is to realize that the expectation and

integration operators commute, that is E[
∫
. . . dt] =

∫
E[. . .]dt.

Theorem 13.1: The mean value of Y (t) is constant and is given by

µY (t) = µXH(0) (13.35)

Proof: First note that since X(t) is WSS, we have E[X(t− u)] = µX . Then:

µY (t) = E[Y (t)]

= E[

∫ ∞

−∞
h(u)X(t− u)du]

=

∫ ∞

−∞
h(u)E[X(t− u)]du

= µX

∫ ∞

−∞
h(u)du = µXH(ω)|ω=0 �
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Theorem 13.2: The autocorrelation function of Y (t) is given by

RY (t1, t2) =

∫ ∞

−∞

∫ ∞

−∞
h(u1)h(u2)RX(t1 − t2 − u1 + u2)du1du2 (13.36)

Proof: Left as an exercise to the reader.

Main conclusion:

• Note from (13.25) that µY (t) is a constant. Also note from (13.36) that

RY (t1, t2) is actually a function of τ = t1 − t2.

• This shows that Y (t) is WSS. In other words, if a WSS process is passed

through an LTI system, the resulting output process is also WSS.

Theorem 13.3: The power spectral density of Y (t) is given by

SY (ω) = |H(ω)|2SX(ω) (13.37)

Proof: Starting from (13.36), we have

RY (τ) =

∫ ∞

−∞

∫ ∞

−∞
h(u1)h(u2)RX(τ − u1 + u2)du1du2

= h(τ) ∗
∫ ∞

−∞
h(u2)RX(τ + u2)du2

= h(τ) ∗
∫ ∞

−∞
h(−u2)RX(τ − u2)du2

= h(τ) ∗ h(−τ) ∗RX(τ)

Finally, taking the Fourier transform on both sides and noting that here,

h(t) ∈ R, we obtain:

SY (ω) = H(ω)H∗(ω)SX(ω) �
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Example 13.8:

◮ The random process X(t) in Example 13.6 is passed through and LTI system

with square magnitude response

H(ω) =
1

α2 + ω2

Find the PSD and autocorrelation function of the output process Y (t).

Solution: Applying (13.37), we have

SY (ω) = |H(ω)|2SX(ω)

=
1

α2 + ω2
σ2π[δ(ω − ω0) + δ(ω + ω0)]

=
σ2

α2 + ω2
0

π[δ(ω − ω0) + δ(ω + ω0)]

Taking the inverse Fourier transform

RY (ω) =
σ2

α2 + ω2
0

cos(ω0τ)

◭
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13.5 Poisson processes

Counting process:

• Consider a random experiment that takes place over the time interval

T = [0,∞), and assume that at any given time t > 0, a certain event

may or not occur.

• Let N(t) denote the number of occurrences of this event over the time

interval (0, t]. We refer to N(t) as a counting process.

Remarks:

• By definition, N(t) is a non-decreasing function of time t. A typical

realization of a counting process N(t) is illustrated below, where ti, (i =

1, 2, . . .) denote the time of occurence of the ith event:

N(t)

0

1

2

3

4

t

5

6

0
t
1

t
2

t
3

t
4

t
5

t
6

• Note that for each t > 0, N(t) is a RV with set of possible values

{0, 1, 2, ....}. In practice it is of interest to characterize the PMF of

N(t), i.e. P (N(t) = n) for n = 0, 1, 2, ....
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• Below, we develop such a characterization for a special type of process

called a Poisson process.

Definition: A counting process N(t) is called a Poisson process with rate λ if

the following three basic properties are satisfied:

(a) Stationarity : the PMF of the number of events in a given time interval

depends only on the length of this interval and not its location.

(b) Independent increments : the number of events that occur in disjoint

time intervals are independent.

(c) Orderliness : for t small, P (N(t) = 1) ≈ λt and P (N(t) ≥ 2) ≈ 0.

Remarks:

• These basic assumptions are often satisfied in practice.

• As a result, there are numerous examples of Poisson process in science

and engineering, including:

- number of alpha particles emitted by a radio-active substance

- number of earthquakes in a certain geographical area of a country

- number of requests for connections in a communication network

- number of binary packets received at a swithching node of a com-

munications network

all measured from some time 0 up to t.
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Theorem 13.4: Let N(t) be a Poisson process with rate λ > 0, and suppose

that N(0) = 0. For any value of t > 0, the PMF of N(t) is given by

P (N(t) = n) =
(λt)ne−λt

n!
, n = 0, 1, 2, ... (13.38)

Remarks:

• A formal proof of this result is beyond the scope of this course.

• The theorem essentially says that for any given time t > 0, the RV N(t)

is Poisson with parameter λt.

• Accordingly, the expected value of N(t) is given by

E[N(t)] = λt (13.39)

that is, the expected value of the count increases linearly with time at

the rate λ.
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Example 13.9:

◮ Suppose that in a certain geographical area, earthquakes occur at a rate of 7 per

year, in accordance with a Poisson process.

(a) What is the probability of no earthquakes in one year?

(b) What is the probability that in exactly three of the next 8 years, no earthquake

will occur?

Solution: Let N(t) denote the number of earthquakes from time 0 up to time

t, inclusively. For convenience, assume that the unit of time is the year. Then,

N(t) is a Poisson process with rate λ = 7:

P (N(t) = n) =
(7t)ne−7t

n!
, n = 0, 1, 2, ...

(a) We seek

P (N(1) = 0) = e−7 ≈ 9.1 · 10−4

(b) Because of the stationarity assumption with Poisson process:

P (no earthquake in one year) = P (N(1) = 0)

regardless of the specific one year period being considered. Because of the inde-

pendence assumption, the number of earthquakes in consecutive years are inde-

pendent random variables.

Thus, each of the 8 consecutive years may be viewed as an independent Bernouilli

trial, where a success is defined as 0 earthquake with probability

p = P (N(1) = 0) = 9.1 · 10−4

Let X be the number of years, over the next 8 years, with no earthquakes. It

follows that X is binomial with parameters p and n = 8. Therefore

P (X = 3) =

(
8

3

)

p3(1 − p)5 ≈ 4.2 · 20−8

◭
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13.5.1 Property of interarrival time

Definition: Consider a counting process N(t) and let ti (i = 1, 2, ...) denote

the time of occurrence of the ith event (for convenience, set t0 = 0). The

continuous RVs

Xi = ti − ti−1 for i ∈ N (13.40)

are called interarrival times.

Remarks:

• This situation is illustrated below:

N(t)
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• It is often of interest to characterize the distributions of the RV Xi. For

the Poisson process, this is relatively straightforward.
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Theorem 13.5: The interarrival times Xi (i = 1, 2, ...) are exponential RVs

with parameter λ.

Proof: First consider X1. Let F1(x) denote its CDF. We show below that

F1(x) has the general form (7.80):

- Observe that for x > 0, the two events X1 > x and N(x) = 0 are

identical. Thus, for x > 0, we have

P (X1 > x) = P (N(x) = 0) = e−λx, (13.41)

which implies

F (x) = P (X1 ≤ x) = 1 − P (X1 > x) = 1 − e−λx (13.42)

- By definition, X1 = t1 > 0. Thus, for x ≤ 0, we have

F1(x) = P (X1 ≤ x) = 0 (13.43)

This approach may be generalized to show that the other RVs Xi (i > 1) are

also exponential with parameter λ. �

c© 2003 Benôıt Champagne Compiled September 12, 2006



13.5 Poisson processes 336

Remarks:

• As a result of this connection with the Poisson process, the exponential

RV is extremely important.

• Examples of exponential RV include:

- time between phone calls,

- interarrival time of binary packets at a routing node in a network,

- time interval between earthquakes.

Example 13.10:

◮ Suppose that on average, a 128-bit packet arrives at a switching node of a digital

communication network every 10µs. Assuming that these arrivals can be modeled

as a Poisson process, find the probability that the next packet arrives within 5µs.

Solution: Let X denote the arrival time of the next packet, measured relative

to the arrival time of the most recent packet. Since the arrivals are Poisson, it

follows that X is exponential with parameter λ. To find λ, note that

E(X) =
1

λ
= 10µs =⇒ λ = 0.1µs−1

Finally, we seek

P (X ≤ 5µs) = F (5µs)

= 1 − e−λ·5µs

= 1 − e−1/2 ≈ 0.39

◭
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