McGill University, Faculty of Engineering
 Course ECSE-305A: Probability and Random Signals I

Midterm Examination \#1, Fall 2006

Date and time: Friday, November 10, 2006, 10:35-11:25
Examiner: Profs. B. Champagne and Y. Psaromiligkos
Instructions: This is a closed book examination: only the faculty standard calculator is allowed, NO crib sheet. Attempt all questions.
NOTE: This exam spans 2 pages

1. The CDF of random variable X is given by

$$
F(x)= \begin{cases}a, & x<-1 \\ b x+c, & -1<x<0 \\ b x+d, & 0<x<1 \\ e, & x>1\end{cases}
$$

where a, b, c, d and e are unspecified constants. It is also known that $P(|X|=1)=0$ and $P(X=0)=1 / 3$.
(a) Find the constant values a, b, c, d and e and sketch the graph of $F(x)$.
(b) Show that X is a mixed RV. That is, identify the 4 components entering the definition of a mixed RV as seen in class.
(c) Find the PDF of X and sketch its graph.
2. Assume that the temperature T measured in ${ }^{\circ} C$ (degrees Celsius) at noon time in Montreal during the month of April is a normal (Gaussian) random variable. Further, it is known that: (i) $P\left(T \geq 5^{\circ} C\right)=0.5$ (ii) $P\left(T \geq 10^{\circ} C\right)=0.3085$.
(a) Find the mean and the variance of T.
(b) What is the probability that T is between $-5^{\circ} C$ and $0^{\circ} C$?
(c) What is the mean and variance of the temperature at noon time in Montreal during the month of April measured in degrees Fahrenheit? NOTE: If T_{c} is the temperature in Celsius then the corresponding temperature in Fahrenheit is $T_{f}=\frac{9}{5} T_{c}+32$.
3. Let X, the lifetime in years of a spark plug, be an exponential RV with mean 5 years.
(a) What is the probability that a spark plug will fail in less than one year?
(b) A mechanic buys a box of 20 spark plugs. What is the expected number of spark plugs that will still work after a year? Assume that a spark plug fails independently of the others.
(c) Find the PMF of $Y=\lceil X\rceil$ i.e., Y is the smallest integer greater than or equal to X.

Appendix: Table of values of the standard normal CDF

x	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.606	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.705	0.7088	0.7123	0.71	0.7190	0.7224
0.6	0.7	0.72	0.7324	0.7	0.738	0.7	0.7	0.7486	0.7517	0.7549
.	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.791	0.7939	0.7967	0.799	0.8023	0.8051	0.8078	0.8106	0.8133
.	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.850	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.872	0.8749	0.8770	0.8790	0.8810	0.8830
2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
3	0.9032	0.9049	0.9066	0.9082	0.9099	0.911	0.9131	0.914	0.9162	0.9177
,	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.934	0.9357	0.9370	0.938	0.9394	0.9	0.9	0.94	0.9
6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.973	0.9744	0.9750	0.9756	0.9761	0.9767
0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.995	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

