McGill University, Faculty of Engineering
 Course ECSE-305A: Probability and Random Signals I
 Midterm Examination \#1, Fall 2005

Date and time: Friday, October 7, 2005, 10:35-11:25
Examiner: Prof. B. Champagne and Y. Psaromiligkos
Instructions: This is a closed book examination: only the faculty standard calculator is allowed, NO crib sheet. Attempt all questions. NOTE: this exam spans 2 pages

1. Consider a group of 8 randomly selected students.
(a) What is the probability that none of them were born during the month of July? Assume that birth rates are approximately the same for the different months of the year.
(b) What is the probability that at least 2 of them were born during the same month (but not necessarily in the same year)?
(c) What is the probability that exactly 3 of them were born during the same month while the others were born in different months?
(d) What is the probability that there are 2 months each containing the birthday of two students, and 4 months each containing the birthday of 1 student.
2. A recent study in Montreal found that 50% of the people read La Presse, 40% of the

20 marks people read The Gazette, while 20% of the people do not read any of the two.
(a) Find the probability that a randomly selected person reads both newspapers.
(b) Find the probability that a randomly selected person reads La Presse but not The Gazette.
(c) Find the probability that a randomly selected person reads exactly one newspaper.
(d) A randomly selected person reads La Presse. What is the probability that La Presse is the only newspaper that she reads?
3. Consider the following functions:

$$
q(x)= \begin{cases}a, & x=0 \\ 2 a^{2}, & x=1 \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
g(x)= \begin{cases}0, & x<0 \\ c x+d, & 0 \leq x<1 \\ 1, & 1 \leq x\end{cases}
$$

(a) Find the value (or values) of a so that $q(x)$ is a probability mass function (PMF).
(b) For each of the following cases, sketch the graph of $g(x)$ and indicate whether or not it is a cumulative distribution function (CDF). If it is, identify the type of the corresponding RV. Justify your answer.

- $c=0.5, d=0.75$
- $c=-0.5, d=0.5$
- $c=0.25, d=0$
(c) Find the values of c, d so that $q(x)$ and $g(x)$ are the PMF and the CDF, respectively, of the same RV.

