ECSE 305A: Probability and Random Signals I Problem Set 5 solutions

McGill University

October 26, 2006

1. $(\mathrm{a}) c(-1)^{2}+c+4 c+9 c=1 \longrightarrow c=1 / 15 \quad \mu=4 / 3$
(b) $c * \sum_{x=1}^{\infty} \alpha^{x}=\frac{c \alpha}{1-\alpha}=1 \longrightarrow c=\frac{1-\alpha}{\alpha} \quad i f|\alpha|<1$ $\mu=\sum_{x=1}^{\infty}$ cx $\alpha^{x}=\frac{c \alpha}{(1-\alpha)^{2}}=\frac{1}{1-\alpha}$
(c)

$$
\begin{aligned}
\sum_{x=0}^{2 n} c|n-x| & =\sum_{x=0}^{n} c(n-x)+\sum_{x=n+1}^{2 n} c(x-n) \\
& =(n+1) c n+c \sum_{x=0}^{n} x-n(c n)+c \sum_{n+1}^{2 n} x \\
& =c n(n+1) \\
& =1
\end{aligned} \quad \begin{aligned}
\mu & \longrightarrow \quad \sum_{x=1 /(n(n+1))}^{2 n} c x|n-x| \\
& =\sum_{x=0}^{n} c x(n-x)+\sum_{x=n+1}^{2 n} c x(x-n) \\
= & \frac{1}{n(n+1)}\left(\frac{n^{2}(n+1)}{2}-\frac{2 n(n+1)(2 n+1)}{6}+\frac{2 n(2 n+1)(4 n+1)}{6}-\frac{n(2 n-n)(3 n+1)}{2}\right) \\
= & n
\end{aligned}
$$

2. (a) $E(X)=\sum_{x=1}^{5} x \cdot x / 15=11 / 3 ; E\left(X^{2}\right)=\sum_{x=1}^{5} x^{2} \cdot x / 15=15$
$\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=14 / 9$.
(b) $p_{Y}(y)= \begin{cases}1 / 15+5 / 15=6 / 15 & y=5 \\ 2 / 15+4 / 15=6 / 15 & y=8 \\ 3 / 15 & y=9 \\ 0 & \text { else }\end{cases}$
(c)

$$
E(Y)=5 \cdot 6 / 15+8 \cdot 6 / 15=9 \cdot 3 / 15=21 / 3 .
$$

or

$$
E(Y)=E(X(6-X))=E(6 X)-E\left(X^{2}\right)=6 E(X)-E\left(X^{2}\right)=6 \cdot 11 / 3-15=21 / 3 .
$$

3.

$$
\begin{aligned}
E\left(X^{2}\right) & =\sum_{x=0}^{n} x^{2}\binom{n}{x} p^{x} q^{n-x} \\
& =\sum_{x=1}^{x} x^{2} \frac{n!}{x!(n-x)!} p^{x} q^{n-x} \\
& =\sum_{x=1}^{n} x \frac{n!}{(x-1)!(n-x)!} p^{x} q^{n-x} \\
& =\sum_{x=1}^{n} x \frac{n(n-1)!}{(x-1)!(n-1-(x-1))!} p p^{x-1} q^{n-1-(x-1)} \\
& =\sum_{y=0}^{m}(y+1) \frac{n m!}{(y)!(m-y)!} p p^{y} q^{m-y} \\
& =n p\left(\sum_{y=0}^{m} \frac{y m!}{y!(m-y)!} p^{y} q^{m-y}+\sum_{y=0}^{m} \frac{y!}{m!(y-m)!} p^{y} q^{m-y}\right) \\
& =n p(m p+1) \\
& =n p((n-1) p+1) \\
& =n p(n p+q) .
\end{aligned}
$$

$\operatorname{Var}(X)=E\left(X^{2}\right)-\mu^{2}=n^{2} p^{2}+n p q-n^{2} p^{2}=n p q$.
4. If X denotes the number of persons who decide correctly among a three-person jury, then X is a binomial random variable with parameters $(3, p)$.
Probability that a three-person jury decides correctly is:

$$
\begin{aligned}
P(X \geq 2) & =P(X=2)+P(X=3) \\
& =\binom{3}{2} p^{2}(1-p)+\binom{3}{3} p^{3}(1-p)^{0} \\
& =3 p^{2}(1-p)+p^{3} \\
& =3 p^{2}-2 p^{3} .
\end{aligned}
$$

The condition that a three-person jury is preferable to a single juror is if and only if:

$$
\begin{aligned}
3 p^{2}-2 p^{3} & >p \\
3 p-2 p^{2}-1 & >0 \\
2(1-p)(p-1 / 2) & >0
\end{aligned}
$$

Since $1-p>0$ then $p-1 / 2$ must be positive, which results in $p>1 / 2$. Therefore, the three-person jury is preferable if $p>1 / 2$. In case $p<1 / 2$, the single juror is preferable and if $p=1 / 2$ there is no difference.
5. (a)

$$
1-0.55 * \sum_{i=0}^{5} 0.45^{i}=0.0083
$$

(b)

$$
0.55 * 0.45^{3} * 0.55 *\left(\sum_{i=0}^{2} 0.45^{i}\right)=0.0456
$$

6. (a) If $S_{n}=\sum_{k=1}^{\infty} k \rho^{k}$, then

$$
\begin{aligned}
S_{n}-\rho S_{n} & =\rho+\rho^{2}+\rho^{3}+\cdots \\
& =\frac{\rho}{1-\rho} \\
& \Longrightarrow S_{n}=\frac{\rho}{(1-\rho)^{2}}
\end{aligned}
$$

(b) If $S_{n}=\sum_{k=1}^{\infty} k^{2} \rho^{k}$, then

$$
\begin{aligned}
S_{n}-\rho S_{n} & =\sum_{k=1}^{\infty}\left((k)^{2}-(k-1)^{2}\right) \rho^{k} \\
& =\sum_{k=1}^{\infty}((k+k-1)(k-k+1)) \rho^{k} \\
& =2 \sum_{k=1}^{\infty} k \rho^{k}-\sum_{k=1}^{\infty} \rho^{k} \\
& =\frac{2 \rho}{(1-\rho)^{2}}-\frac{\rho}{1-\rho} \\
& \Longrightarrow S_{n}=\frac{\rho(1+\rho)}{(1-\rho)^{3}}
\end{aligned}
$$

7. (a) If X denotes the number of the faculty, who was born on 1st of January, then X is Binomial RV with parameters ($\mathrm{n}=45, \mathrm{p}=1 / 365$). Then,

$$
p(x)=P(X=x)= \begin{cases}\binom{45}{0}(1 / 365)^{0}(1-1 / 365)^{45-0} \approx 0.88 & x=0 \\ \binom{45}{1}(1 / 365)^{1}(1-1 / 365)^{45-1} \approx 0.10 & x=1 \\ \binom{45}{2}(1 / 365)^{2}(1-1 / 365)^{45-2} \approx 0.006 & x=2 \\ \binom{5}{3}(1 / 365)^{3}(1-1 / 365)^{45-3} \approx 0.0002 & x=3\end{cases}
$$

(b) We can approximate the Binomial RV with a Poisson RV with $\lambda=n p=45 * 1 / 365 \approx 0.12$. Then,

$$
p(x)=P(X=x)= \begin{cases}\frac{e^{-0.12} 0.12^{0}}{0!} \approx 0.88 & x=0 \\ \frac{e^{-0.12} 0.12^{1}}{1!} \approx 0.10 & x=1 \\ \frac{e^{-0.12} 0.12^{2}}{2!} \approx 0.006 & x=2 \\ \frac{e^{-0.120 .12^{3}}}{3!} \approx 0.0002 & x=3\end{cases}
$$

8. Let X denotes the number of errors on the specific page, then X is a Poisson random variable with $E(X)=1 / 5$. Therefore, $\lambda=1 / 5$ and $P(X=n)=\frac{(1 / 5)^{n} e^{-1 / 5}}{n!}$. Hence, $P(X \geq 1)=1-P(X=0)=$ $1-e^{-1 / 5} \approx 0.18$
9. (a) The probability of reaching the decision on a certain round of coin tossing is:

$$
\binom{3}{2} p^{2} q+\binom{3}{2} q^{2} p=3 p q(p+q)=3 p q .
$$

The probability of not reaching the decision is $1-3 p q$. If X denotes the number of tosses until they reach the decision, then X is a geometric random variable with the parameter $3 p q$. Therefore,

$$
P(X<n)=1-P(X \geq n)=1-(1-3 p q)^{n-1} .
$$

(b)We want to find the minimum number (n) of tosses so that:

$$
\begin{aligned}
P(X \leq n) & \geq 0.95 \\
1-P(X>n) & \geq 0.95 \\
P(X>n) & \leq 0.05
\end{aligned}
$$

But, $P(X>n)=(1-3 p q)^{n}=(1-3 / 4)^{n}=(1 / 4)^{n}$. Thus, $(1 / 4)^{n} \leq$ $0.05 \Rightarrow n \geq 2.16 \Rightarrow$ the smallest n is 3 .
10. (a) $R_{X}=\{r, r+1, r+2, \cdots\}$.
(b)The probability that the r th success occurs in the nth trial is equal to the probability that exactly $r-1$ success happen in the $n-1$ number of trials and the nth trial is a success. Therefore,

$$
\begin{aligned}
P(X=n) & =\binom{n-1}{r-1} p^{r-1}(1-p)^{(n-1)-(r-1)} \times p \\
& =\binom{n-1}{r-1} p^{r}(1-p)^{n-r} .
\end{aligned}
$$

Hence, the PMF for the negative binomial RV is:

$$
p(x)=\binom{x-1}{r-1} p^{r}(1-p)^{x-r} \text { where } 0<p<1 \text { and } x=r, r+1, \cdots .
$$

(c) Let X denotes the number of the games until Bill wins and Y the number of the games until Monica wins. Then X and Y are negative binomial RVs with parameters $(5,0.42)$ and $(5,1-0.42=$ $0.58)$, respectively. The probability that the series ends in 8 games is:
$P(X=7)+P(X=7)=\binom{7}{4} 0.42^{5} 0.58^{3}+\binom{7}{4} 0.58^{5} 0.42^{3} \approx 0.089+0.17 \approx 0.25$.

