ECSE 305A: Probability and Random Signals I Problem Set 4 solutions

McGill University

October 5, 2006

1. (a) X is a random variable of mixed type since it is continuous except for discontinuity at 0 and at 1 .
(b)

$$
\begin{gathered}
P(X \geq 5)=1-P(X<5)=1-F\left(5^{-}\right)=0 \\
P(X<0)=F\left(0^{-}\right)=0 \\
P(X \leq 0)=F(0)=\frac{1}{4} \\
P\left(\frac{1}{4} \leq X<1\right)=F\left(1^{-}\right)-F\left(\frac{1}{4}^{-}\right)=\frac{3}{16} \\
P\left(\frac{1}{4} \leq X \leq 1\right)=F(1)-F\left(\frac{1}{4}^{-}\right)=\frac{11}{16} \\
P\left(X>\frac{1}{2}\right)=1-P\left(X \leq \frac{1}{2}\right)=1-F\left(\frac{1}{2}\right)=\frac{5}{8}
\end{gathered}
$$

2. (a) It can be seen that $\operatorname{CDF} F(x)$ is flat except for a finite number of jumps, so X is a discrete RV.
(b)

$$
p(x)= \begin{cases}x<-2 & 0 \\ x=-2 & F(-2)-F\left(-2^{-}\right)=1 / 4-0=1 / 4 \\ x=-1 & F(-1)-F\left(-1^{-}\right)=1 / 4-1 / 4=0 \\ x=0 & F(0)-F\left(0^{-}\right)=1 / 2-1 / 4=1 / 4 \\ x=1 & F(1)-F\left(1^{-}\right)=3 / 4-1 / 2=1 / 4 \\ x=2 & F(2)-F\left(2^{-}\right)=1-3 / 4=1 / 4 \\ x>2 & 0\end{cases}
$$

(c) Assuming $Y=X^{2}$ then $R_{y}=\{0,1,4\}$

$$
p(y)= \begin{cases}y<0 & 0 \\ y=0 & \sum_{x^{2}=0} p(x)=p(x=0)=1 / 4 \\ y=1 & \sum_{x^{2}=1} p(x)=p(x=1)+p(x=-1)=1 / 4+0=1 / 4 \\ y=4 & \sum_{x^{2}=4} p(x)=p(x=2)+p(x=-2)=1 / 4+1 / 4=1 / 2 \\ y>4 & 0\end{cases}
$$

3. Let p be the probability function of X and F be its distribution function. We have

$$
p(i)=\left(\frac{5}{6}\right)^{i-1}\left(\frac{1}{6}\right), \quad i=1,2,3, \ldots
$$

$F(x)=0$ for $x<1$. If $x \geq 1$, for some positive integer $n, n \leq x<n+1$, and we have that

$$
\begin{aligned}
F(x) & =\sum_{i=1}^{n}\left(\frac{5}{6}\right)^{i-1}\left(\frac{1}{6}\right) \\
& =\frac{1}{6} * \frac{1-\left(\frac{5}{6}\right)^{n}}{1-\frac{5}{6}} \\
& =1-\left(\frac{5}{6}\right)^{n}
\end{aligned}
$$

Hence

$$
y= \begin{cases}0 & \text { if } x<1 \\ 1-\left(\frac{5}{6}\right)^{n} & \text { if } n \leq x<n+1, \quad n=1,2,3, \ldots\end{cases}
$$

4.

$$
\begin{array}{rlll}
\sum_{k=0}^{\infty} P(X>k) & =P(X>0) & & +P(X>1) \\
& =P(X=1) & & +P(X>2)+\cdots \\
& & & +P(X=2) \\
& & +P(X=2) & \\
& & +P(X=3)+\cdots \\
& & & +P(X=3)+\cdots \\
& =1 \cdot P(X=1)+\cdots & +2 \cdot P(X=2) & \\
& +3 \cdot P(X=3)+\cdots
\end{array}
$$

5. There are two ways to solve this problem:
(a)

$$
\begin{aligned}
E(Y) & =\sum_{k=0}^{\infty} Y * p_{k} \\
& =\sum_{k=1}^{\infty}(k-1) p_{k} \\
& =\sum_{k=0}^{\infty}(k-1) p_{k}+p_{0} \\
& =E(X)-1+p_{0}
\end{aligned}
$$

$$
\begin{aligned}
E\left(Y^{2}\right) & =\sum_{k=0}^{\infty} Y^{2} * p_{k} \\
& =\sum_{k=1}^{\infty}(k-1)^{2} p_{k} \\
& =\sum_{k=0}^{\infty}(k-1)^{2} p_{k}-p_{0} \\
& =\sum_{k=0}^{\infty}\left(k^{2}-2 k+1\right) p_{k}-p_{0} \\
& =E\left(X^{2}\right)-2 E(X)+1-p_{0}
\end{aligned}
$$

(b) (Optional) Define Moment Function as:

$$
\Gamma(z)=E\left(z^{n}\right)=\sum_{n=-\infty}^{\infty} p_{n} z^{n}
$$

Differentiating $\Gamma(z) k$ times, we obtain

$$
\Gamma^{(k)}(z)=E\left[n(n-1)(n-2) \cdots(n-k+1) z^{n-k}\right]
$$

With $z=1$, this yields

$$
\Gamma^{(k)}(1)=E[n(n-1)(n-2) \cdots(n-k+1)]
$$

In particular, that $\Gamma(1)=1, \Gamma^{\prime}(1)=E(n)$ and $\Gamma^{\prime \prime}(1)=E\left(n^{2}\right)-E(n)$ In this problem, it is obvious that $\Gamma_{y}(z)=p_{0}+z^{-1}\left[\Gamma_{x}(z)-p_{0}\right]$.
Therefore

$$
\Gamma_{y}^{\prime}(z)=z^{-1}\left(z \Gamma_{x}^{\prime}(z)-\Gamma_{x}(z)+p_{0}\right)
$$

and

$$
\Gamma_{y}^{\prime \prime}(z)=z^{-1}\left(z^{2} \Gamma_{x}^{\prime \prime}(z)-z \Gamma_{x}^{\prime}(z)+\Gamma_{x}(z)-p_{0}\right)
$$

Let $z=1$ and we have $\Gamma(1)=1, \Gamma^{\prime}(1)=E(n)$ and $\Gamma^{\prime \prime}(1)=E\left(n^{2}\right)-$ $E(n)$. Therefore

$$
E(Y)=E(X)-1+p_{0}, \quad E\left(Y^{2}\right)=E\left(X^{2}\right)-2 E(X)+1-p_{0}
$$

6. Let X be the number of children they should continue to have until they have one of each sex. Let B be the event that the first child is a boy. Then

$$
\begin{aligned}
P(X=i) & =P(X=i \mid B) P(B)+P\left(X=i \mid B^{c}\right) P\left(B^{c}\right) \\
& =\left(\frac{1}{2}\right)^{i-2}\left(\frac{1}{2}\right) \cdot \frac{1}{2}+\left(\frac{1}{2}\right)^{i-2}\left(\frac{1}{2}\right) \cdot \frac{1}{2} \\
& =\left(\frac{1}{2}\right)^{i-1}
\end{aligned}
$$

So

$$
E(X)=\sum_{i=2}^{\infty} i\left(\frac{1}{2}\right)^{i-1}=-1+\sum_{i=1}^{\infty} i\left(\frac{1}{2}\right)^{i-1}=3
$$

7. (a)Let X be the number of trials required to open the door. Clearly,

$$
P(X=x)=\left(1-\frac{1}{n}\right)^{x-1} \frac{1}{n}, \quad x=1,2,3, \ldots
$$

Thus

$$
\begin{aligned}
E(X) & =\sum_{x=1}^{\infty} x\left(1-\frac{1}{n}\right)^{x-1} \frac{1}{n} \\
& =\frac{1}{n} \frac{1}{\left[1-\left(1-\frac{1}{n}\right)\right]^{2}} \\
& =n
\end{aligned}
$$

To calculate $\operatorname{Var}(X)$, first we find $E\left(x^{2}\right)$. We have

$$
\begin{aligned}
E\left(X^{2}\right) & =\sum_{x=1}^{\infty} x^{2}\left(1-\frac{1}{n}\right)^{x-1} \frac{1}{n} \\
& =\frac{1}{n} \sum_{x=1}^{\infty} x^{2}\left(1-\frac{1}{n}\right)^{x-1} \\
& =\frac{1}{n} \frac{1+\left(1-\frac{1}{n}\right)}{\left[1-\left(1-\frac{1}{n}\right)\right]^{3}} \\
& =2 n^{2}-n
\end{aligned}
$$

Therefore

$$
\operatorname{Var}(X)=\left(2 n^{2}-n\right)-n_{2}=n(n-1)
$$

(b) Let A_{i} be the event that on the i th trial the door opens. Let X be the number of trials required to open the door. Then

$$
\begin{aligned}
& P(X=k)= P\left[A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{k-1}^{c} \cap A_{k}\right] \\
&= P\left(A_{k} \mid A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{k-1}^{c}\right) * \\
& P\left(A_{k-1}^{c} \mid A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{k-2}^{c}\right) * \\
&= \cdots * P\left(A_{2}^{c} \mid A_{1}^{c}\right) * P\left(A_{1}^{c}\right) \\
&= \frac{1}{n-k+1} \prod_{i=n-k+2}^{n} . \\
& E(X)=\sum_{i=1}^{i} i * \frac{1}{n}=\frac{n+1}{2} \\
& E\left(X^{2}\right)= \sum_{i=1}^{n} i^{2} * \frac{1}{n}=\frac{(n+1)(2 n+1)}{6} \\
& \operatorname{Var}(X)= \frac{(n+1)(2 n+1)}{6}-\left(\frac{n+1}{2}\right)^{2}=\frac{n^{2}-1}{12}
\end{aligned}
$$

