ECSE 305A: Probability and Random Signals I
 Problem Set 3 solutions

McGill University

September 29, 2006

1. Let A be the event that during this period he has hiked in Westmount Park at least once. Let B be the event that during this period he has hiked in this park at least twice. We have

$$
P(B \mid A)=\frac{P(B)}{P(A)}
$$

where

$$
P(A)=1-\frac{5^{10}}{6^{10}}=0.838
$$

and

$$
P(B)=1-\frac{5^{10}}{6^{10}}-\frac{10 * 5^{9}}{6^{10}}=0.515
$$

So the answer is $\frac{0.515}{0.838}=0.615$
2. (a)For $1 \leq n \leq 39$, let E_{n} be the event that none of the first $n-1$ cards is a heart or the ace of spades. Let F_{n} be the event that the nth card drawn is the ace of spades. Then the event of "no heart before the ace of spades" is $\cup_{n=1}^{39} E_{n} F_{n}$. Clearly, $\left\{E_{n} F_{n}, 1 \leq n \leq 39\right\}$ forms a sequence of mutually exclusive events. Hence,

$$
\begin{aligned}
P\left(\cup_{n=1}^{39}\left(E_{n} \cap F_{n}\right)\right) & =\sum_{n=1}^{39} P\left(E_{n} \cap F_{n}\right) \\
& =\sum_{n=1}^{39} P\left(E_{n}\right) P\left(F_{n} \mid E_{n}\right) \\
& =\sum_{n=1}^{39} \frac{(n-1)}{(n+1)} * \frac{1}{5-1} 53-n \\
& =\frac{1}{14} .
\end{aligned}
$$

(b) Let the event D_{i} be each placement that the ace of spades is placed before all the hearts. There are $\binom{52}{14}$ of these mutually exclusive events.

In each event 14 positions is chosen and ace of the spades is placed in the first place and then the hearts are placed in 13! different ways in chosen places and at last the rest of the cards can be placed in 38 ! ways in remaining places. So the probability of event A is given by:

$$
\begin{aligned}
P(A) & \left.=\frac{(52}{(14)}\right) 13!38! \\
& =\frac{1}{14} .
\end{aligned}
$$

3. Let A_{n} be the event that Don loses the first n games. By the law of multiplication,

$$
P\left(A_{n}\right)=\frac{2}{3} * \frac{3}{4} * \frac{4}{5} * \cdots * \frac{n+1}{n+2}=\frac{2}{n+2}
$$

Now since $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots A_{n} \supseteq A_{n+1} \supseteq \cdots$, Hence

$$
P\left(\cap_{i=1}^{\infty}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)=0
$$

4. (a)

$$
\begin{aligned}
P(A B \mid C) & =\frac{P(A B C)}{P(C)} \\
& =\frac{P(A B C)}{P(C)} \times \frac{P(B C)}{P(B C)} \\
& =\frac{P(A B C)}{P(B C)} \times \frac{P(B C)}{P(C)} \\
& =P(A \mid B C) P(B \mid C) .
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(A \mid C) & =\frac{P(A C)}{P(C)} \\
& =\frac{P(A C \cap S)}{P(C)} \\
& =\frac{P\left(A C \cap\left(B_{1} \cup \ldots \cup B_{n}\right)\right)}{P(C)} \\
& =\frac{P\left(\left(A C B_{1}\right) \cup \cdots \cup P\left(A C B_{n}\right)\right)}{P(C)} \\
& =\sum_{i=1}^{n} \frac{P\left(A C B_{i}\right)}{P(C)} \times \frac{P\left(B_{i} C\right)}{P\left(B_{i} C\right)} \\
& =\sum_{i=1}^{n} P\left(A \mid B_{i} C\right) P\left(B_{i} \mid C\right)
\end{aligned}
$$

5. Let G be the event that the randomly selected child is a girl, A be the event that she has an older sister, and O, M, and Y be the events that she is the oldest, the middle, and the youngest child of the family, respectively. We have that

$$
\begin{aligned}
P(A \mid G)= & P(A \mid G \cap O) P(O \mid G)+P(A \mid G \cap M) P(M \mid G)+ \\
& P(A \mid G \cap Y) P(Y \mid G) \\
= & 0 * \frac{1}{3}+\frac{1}{2} * \frac{1}{3}+\frac{3}{4} * \frac{1}{3}=\frac{5}{12}
\end{aligned}
$$

6. $\frac{0.15 * 0.25}{0.15 * 0.25+0.85 * 0.75}=0.056$
7. (a) $1-\left(\frac{1}{2}\right)^{n}$
(b) $\binom{n}{k}\left(\frac{1}{2}\right)^{n}$
(c) Let A_{n} be the event of getting n heads in the first n flips. We have

$$
A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots A_{n} \supseteq A_{n+1} \supseteq \cdots
$$

The event of getting heads in all of the flips indefinitely is $\cap_{n=1}^{\infty} A_{n}$. By the continuity property of probability function, its probability is

$$
P\left(\cap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}=0
$$

8. The events $A_{1}, A_{2}, \ldots, A_{n}$ are mutually independent if any $k<n$ of them are independent and

$$
P\left(A_{1}, A_{2}, \cdots, A_{n}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \cdots P\left(A_{n}\right)
$$

For a certain $k,\binom{n}{k}$ equations are needed. Then the total number of equations is

$$
\begin{aligned}
& \binom{n}{2}+\binom{n}{3}+\cdots+\binom{n}{n-1}+\binom{n}{n} \\
= & \sum_{i=0}^{n}\binom{n}{i}-\binom{n}{0}-\binom{n}{1} \\
= & 2^{n}-1-n=2^{n}-(1+n)
\end{aligned}
$$

9. (a) Let H, H_{1}, and H_{2} denote the events that the mother, the first son, and the second son are hemophilic, respectively. We have that

$$
P\left(H_{1}\right)=P\left(H_{1} \mid H\right) P(H)+P\left(H_{1} \mid H^{c}\right) P\left(H^{c}\right)=\frac{1}{2} * \frac{1}{4}+0 * \frac{3}{4}=\frac{1}{8}
$$

(b) Similarly, $P\left(H_{2}\right)=\frac{1}{8}$.
(c) Note that H_{1} and H_{2} are conditionally independent given H. That is, if we are given that the mother is hemophilic, knowledge about one son being hemophilic does not change the chance of the other son being hemophilic. However, H_{1} and H_{2} are not independent. This is because if we know that one son is hemophilic, the mother is hemophilic and therefore with probability $\frac{1}{2}$ the other son is also hemophilic.
To calculate $P\left(H_{1}^{c} \cap H_{2}^{c}\right)$, the probability the none of her sons is hemophiliac, we condition on H again:

$$
P\left(H_{1}^{c} \cap H_{2}^{c}\right)=P\left(H_{1}^{c} \cap H_{2}^{c} \mid H\right) P(H)+P\left(H_{1}^{c} \cap H_{2}^{c} \mid H^{c}\right) P\left(H^{c}\right)
$$

Clearly, $P\left(H_{1}^{c} \cap H_{2}^{c} \mid H^{c}\right)=1$. To find $P\left(H_{1}^{c} \cap H_{2}^{c} \mid H\right)$, we use the fact that H_{1} and H_{2} are conditionally independent given H :

$$
P\left(H_{1}^{c} \cap H_{2}^{c} \mid H\right)=P\left(H_{1}^{c} \mid H\right) P\left(H_{2}^{c} \mid H\right)=\frac{1}{2} * \frac{1}{2}=\frac{1}{4}
$$

Thus,

$$
P\left(H_{1}^{c} \cap H_{2}^{c}\right)=\frac{1}{4} * \frac{1}{4}+1 * \frac{3}{4}=\frac{3}{16}
$$

