ECSE 305A: Probability and Random Signals I Problem Set 1 solutions

McGill University

September 14, 2006

1. (a) C and E;
(b) D and E;
(c) A, B and D;
(d) None.
2. A: infinite and countable,

B: infinite and uncountable,
C: infinite and countable,
D: finite,
E: finite (empty set is finite).
3. (a)

$$
\begin{aligned}
A \cup(B-A) & =A \cup\left(B \cap A^{c}\right) \\
& =(A \cup B) \cap\left(A \cup A^{c}\right) \\
& =(A \cup B) \cap S \\
& =A \cup B
\end{aligned}
$$

(b)

$$
\begin{aligned}
(A \cap B) \cup\left(A^{c} \cap B\right) & =(B \cap A) \cup\left(B \cap A^{c}\right) \\
& =B \cap\left(A \cup A^{c}\right) \\
& =B \cap S \\
& =B
\end{aligned}
$$

4.

$$
\lim _{i \rightarrow \infty} \frac{1}{i}=0
$$

Thus
A_{i} is decreasing, $\lim _{i \rightarrow \infty} A_{i}=\{0\} ;$
B_{i} is decreasing, $\lim _{i \rightarrow \infty} B_{i}=\{0\} ;$
C_{i} is increasing, $\lim _{i \rightarrow \infty} C_{i}=(0,1) ;$
D_{i} is increasing, $\lim _{i \rightarrow \infty} D_{i}=[0,1)$.
5. (a) There are 3 ways to go from A to B and 2 ways to go from B to C; hence, $n=3 \cdot 2=6$;
(b) There are 6 ways to go from A to C by way of B and 6 ways to return. Thus, $n=6 \cdot 6=36$;
(c) The person will travel from A to B to C to B to A. Enter these letters with connecting arrows as follows:

$$
A \rightarrow B \rightarrow C \rightarrow B \rightarrow A
$$

There are 3 ways to go from A to B and 2 ways to go from B to C. Since a bus line is not to be used more than once, there are only 1 ways to go from C back to B and only 2 ways to go from B back to A. Enter these number above the corresponding arrows as follows:

$$
A \xrightarrow{3} B \xrightarrow{2} C \xrightarrow{1} B \xrightarrow{2} A
$$

Thus, $n=3 \cdot 2 \cdot 1 \cdot 2=12$.
(d) Naming the bus lines from A to $\mathrm{B}(A B 1, A B 2, A B 3)$ and bus lines from B to $\mathrm{C}(B C 1, B C 2)$, the tree diagram will be:

6. (a) $n=6!=720$;
(b) There are 2 ways to distribute them according to sex: BBBGGG or GGGBBB. In each case the boys can sit in $3!=6$ ways and the grils can sit in $3!=6$ ways. Thus, altogether, there are $2 \cdot 3!\cdot 3!=72$ ways;
(c) There are 4 ways to distribute them according to sex: GGGBBB, BGGGBB, BBGGGB and BBBGGG. There are $4 \cdot 3!\cdot 3!=144$ ways; (d) When the group sits in a circle, all the circular shifts of each permutation are the same. For instance, numbering the boys and girls, permutation $B_{1} B_{2} B_{3} G_{1} G_{2} G_{3}, B_{2} B_{3} G_{1} G_{2} G_{3} B_{1}, B_{3} G_{1} G_{2} G_{3} B_{1} B_{2}$ and all other circular shifts of this sitting are the same. For each permutation we have 6 circular shifts, therefore the numbers calculated above must be divided by 6 .
7. (a) This concerns combinations, not permutation, since order does not count in a committee. There are " 12 choose 4 " such committees. That is,

$$
n=C(12,4)=\binom{12}{4}=\frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \cdot 3 \cdot 2 \cdot 1}=495
$$

(b) The 2 boys can be chosen from the 9 boys in $\binom{9}{2}$ ways and the 2 girls can be chosen from the 3 girls in $\binom{3}{2}$ ways. Thus,

$$
n=\binom{9}{2}\binom{3}{2}=\frac{9 \cdot 8}{2 \cdot 1} \cdot \frac{3 \cdot 2}{2 \cdot 1}=108
$$

(c) The 3 boys can be chosen from the 9 boys in $\binom{9}{3}$ ways and the 1 girls can be chosen from the 3 girls in $\binom{3}{1}$ ways. Thus

$$
n=\binom{9}{3}\binom{3}{1}=\frac{9 \cdot 8 \cdot 7}{3 \cdot 2 \cdot 1} \cdot \frac{3}{1}=252
$$

(d) There are 3 cases in this problem: 1 girl, 2 girls and 3 girls. We can put all the ways together. Thus

$$
n=\binom{9}{3}\binom{3}{1}+\binom{9}{2}\binom{3}{2}+\binom{9}{1}\binom{3}{3}=252+108+9=369
$$

Or we can remove the ways that have no girls from the total ways without restrictions. Thus,

$$
n=\binom{12}{4}-\binom{9}{4}=495-126=369
$$

8. This problem concerns permutations with repetitions. $n=\frac{9!}{2!2!2!}=$ 45360 , since there are 9 letters of which 2 are M, 2 are T and 2 are E . When the letter C and E are chosen for the first and last letter, we have 7 letters of which 2 are M and 2 are T, therefore $n=\frac{7!}{2!2!}$.
9. This problem concerns permutations. For the first person in the line we have 10 possible choices. Since the second person in the line must be from other nationality, there are 5 choices available. For the third person, considering the condition on the nationality and the fact that we have already chosen one person from this nationality (first person) we have 4 choices. Therefore, $n=10 \cdot 5 \cdot 4 \cdot 4 \cdot 3 \cdot 3 \cdot 2 \cdot 2 \cdot 1 \cdot 1=2880$.
10. for mathematical induction, we must first prove that the theorem holds when $n=0$, that is $(x+y)^{0}=1=\sum_{i=0}^{0}\binom{0}{i} x^{0-i} y^{i}$ which is true.
Then assuming that the theorem holds for case n, it must be shown
that it holds for $n+1$.

$$
\begin{aligned}
(x+y)^{n+1} & =(x+y)(x+y)^{n} \\
& =x \sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}+y \sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j} \\
& =\sum_{i=0}^{n}\binom{n}{i} x^{n+1-i} y^{i}+\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j+1} \\
& =x^{n+1}+\sum_{i=1}^{n}\binom{n}{i} x^{n+1-i} y^{i}+\sum_{j=0}^{n}\binom{n}{i} x^{n-j} y^{j+1} \\
& =x^{n+1}+\sum_{i=1}^{n}\binom{n}{i} x^{n+1-i} y^{i}+\sum_{i=1}^{n+1}\binom{n}{i-1} x^{n-i+1} y^{i} \\
& =x^{n+1}+\sum_{i=1}^{n}\binom{n}{i} x^{n+1-i} y^{i}+\sum_{i=1}^{n}\binom{n-1}{i-1} x^{n-i+1} y^{i}+y^{n+1} \\
& \left.=x^{n+1}+y^{n+1}+\sum_{i=1}^{n}\left[\begin{array}{c}
n \\
i
\end{array}\right)+\binom{n-1}{i-1}\right] x^{n+1-i} y^{i} \\
& =x^{n+1}+y^{n+1}+\sum_{i=1}^{n}\binom{n+1}{i} x^{n+1-i} y^{i} \\
& =\sum_{i=0}^{n+1}\binom{n+1}{i} x^{n+1-i} y^{i}
\end{aligned}
$$

In the proof we have used the Theorem2.9 stating that $\binom{n+1}{r}=\binom{n}{r}+$ $\binom{n}{r-1}$ in the lecture notes.
The expansion of $(x+y)^{n}$ is a polynomial with $n+1$ terms. For a certain term $x^{n-i} y^{i}$, the coefficient can be view as choosing i "y" from n " $\mathrm{x}+\mathrm{y}$ ". It's equal to $\binom{n}{i}$
Thus

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}
$$

