
ECSE 305A: Probability and Random Signals I

Problem Set 1

solutions

McGill University

September 14, 2006

1. (a) C and E;
(b) D and E;
(c) A, B and D;
(d) None.

2. A: infinite and countable,
B: infinite and uncountable,
C: infinite and countable,
D: finite,
E: finite (empty set is finite).

3. (a)

A ∪ (B − A) = A ∪ (B ∩ Ac)
= (A ∪ B) ∩ (A ∪ Ac)
= (A ∪ B) ∩ S

= A ∪ B

(b)

(A ∩ B) ∪ (Ac ∩ B) = (B ∩ A) ∪ (B ∩ Ac)
= B ∩ (A ∪ Ac)
= B ∩ S

= B
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A
A

BB

B − A

A ∪ B = A ∪ (B − A) B = (A ∩ B) ∪ (Ac ∩ B)

B ∩ AcB ∩ A

4.

lim
i→∞

1

i
= 0

Thus
Ai is decreasing, limi→∞ Ai = {0};
Bi is decreasing, limi→∞ Bi = {0};
Ci is increasing, limi→∞ Ci = (0, 1);
Di is increasing, limi→∞ Di = [0, 1).

5. (a) There are 3 ways to go from A to B and 2 ways to go from B to
C; hence, n = 3 · 2 = 6;
(b) There are 6 ways to go from A to C by way of B and 6 ways to
return. Thus, n = 6 · 6 = 36;
(c) The person will travel from A to B to C to B to A. Enter these
letters with connecting arrows as follows:

A → B → C → B → A

There are 3 ways to go from A to B and 2 ways to go from B to C.
Since a bus line is not to be used more than once, there are only 1
ways to go from C back to B and only 2 ways to go from B back to A.
Enter these number above the corresponding arrows as follows:

A
3
→ B

2
→ C

1
→ B

2
→ A

Thus, n = 3 · 2 · 1 · 2 = 12.
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(d) Naming the bus lines from A to B (AB1, AB2, AB3) and bus lines
from B to C (BC1, BC2), the tree diagram will be:

A B C B A

AB2
A

B
1

BC1

BC1

BC1

BC2

BC2

BC2

BC1

BC1

BC1

AB2

AB2

AB1

AB1

AB2

AB2

AB3

AB3

AB3

AB3

AB3

AB3

A
B

3

BC2

BC2

BC2

6. (a) n = 6! = 720;
(b) There are 2 ways to distribute them according to sex: BBBGGG
or GGGBBB. In each case the boys can sit in 3! = 6 ways and the
grils can sit in 3! = 6 ways. Thus, altogether, there are 2 · 3! · 3! = 72
ways;
(c) There are 4 ways to distribute them according to sex: GGGBBB,
BGGGBB, BBGGGB and BBBGGG. There are 4 · 3! · 3! = 144 ways;
(d) When the group sits in a circle, all the circular shifts of each per-
mutation are the same. For instance, numbering the boys and girls,
permutation B1B2B3G1G2G3, B2B3G1G2G3B1, B3G1G2G3B1B2 and
all other circular shifts of this sitting are the same. For each permuta-
tion we have 6 circular shifts, therefore the numbers calculated above
must be divided by 6.

7. (a) This concerns combinations, not permutation, since order does not
count in a committee. There are ”12 choose 4” such committees. That
is,

n = C(12, 4) =

(

12

4

)

=
12 · 11 · 10 · 9

4 · 3 · 2 · 1
= 495

3



(b) The 2 boys can be chosen from the 9 boys in
(

9

2

)

ways and the 2

girls can be chosen from the 3 girls in
(

3

2

)

ways. Thus,

n =

(

9

2

)(

3

2

)

=
9 · 8

2 · 1
·
3 · 2

2 · 1
= 108

(c) The 3 boys can be chosen from the 9 boys in
(

9

3

)

ways and the 1

girls can be chosen from the 3 girls in
(

3

1

)

ways. Thus

n =

(

9

3

)(

3

1

)

=
9 · 8 · 7

3 · 2 · 1
·
3

1
= 252

(d) There are 3 cases in this problem: 1 girl, 2 girls and 3 girls. We
can put all the ways together. Thus

n =

(

9

3

)(

3

1

)

+

(

9

2

)(

3

2

)

+

(

9

1

)(

3

3

)

= 252 + 108 + 9 = 369

Or we can remove the ways that have no girls from the total ways
without restrictions. Thus,

n =

(

12

4

)

−

(

9

4

)

= 495 − 126 = 369

8. This problem concerns permutations with repetitions.n = 9!
2!2!2!

=
45360, since there are 9 letters of which 2 are M, 2 are T and 2 are
E. When the letter C and E are chosen for the first and last letter, we
have 7 letters of which 2 are M and 2 are T, therefore n = 7!

2!2!
.

9. This problem concerns permutations. For the first person in the line
we have 10 possible choices. Since the second person in the line must
be from other nationality, there are 5 choices available. For the third
person, considering the condition on the nationality and the fact that
we have already chosen one person from this nationality (first person)
we have 4 choices. Therefore, n = 10 · 5 · 4 · 4 · 3 · 3 · 2 · 2 · 1 · 1 = 2880.

10. for mathematical induction, we must first prove that the theorem holds
when n = 0, that is (x + y)0 = 1 =

∑0

i=0

(

0

i

)

x0−iyi which is true.

Then assuming that the theorem holds for case n, it must be shown
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that it holds for n + 1.

(x + y)n+1 = (x + y)(x + y)n

= x
∑n

i=0

(

n
i

)

xn−iyi + y
∑n

j=0

(

n
j

)

xn−jyj

=
∑n

i=0

(

n

i

)

xn+1−iyi +
∑n

j=0

(

n

j

)

xn−jyj+1

= xn+1 +
∑n

i=1

(

n

i

)

xn+1−iyi +
∑n

j=0

(

n

i

)

xn−jyj+1

= xn+1 +
∑n

i=1

(

n
i

)

xn+1−iyi +
∑n+1

i=1

(

n
i−1

)

xn−i+1yi

= xn+1 +
∑n

i=1

(

n

i

)

xn+1−iyi +
∑n

i=1

(

n

i−1

)

xn−i+1yi + yn+1

= xn+1 + yn+1 +
∑n

i=1[
(

n

i

)

+
(

n

i−1

)

]xn+1−iyi

= xn+1 + yn+1 +
∑n

i=1

(

n+1

i

)

xn+1−iyi

=
∑n+1

i=0

(

n+1

i

)

xn+1−iyi

In the proof we have used the Theorem2.9 stating that
(

n+1

r

)

=
(

n

r

)

+
(

n

r−1

)

in the lecture notes.

The expansion of (x + y)n is a polynomial with n + 1 terms. For a
certain term xn−iyi, the coefficient can be view as choosing i ”y” from
n ”x+y”. It’s equal to

(

n

i

)

Thus

(x + y)n =

n
∑

i=0

(

n

i

)

xn−iyi
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