ECSE-305 (Fall 2005)

Probability and Random Signals I

Assignment 8

October 31, 2005

Student Name:

1. \qquad
ID:
\qquad
Section:
\qquad
2. \qquad ـ_

Section:
\qquad

$\mathrm{Q} \#$	Marks
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
Total	

Question 1.

Let X be a Rayleigh random variable. Calculate its mean $E(X)$ and variance $\operatorname{Var}(X)$.
Question 2.
A cdf of a random variable is given by

$$
F_{X}(x)=\left\{\begin{array}{lr}
0 & -\infty<x<0 \\
4 x / 10 & 0 \leq x<2 \\
1 & 2 \leq x<\infty
\end{array}\right.
$$

Find its pdf and $E(X)$.

Question 3.

Let X be a continuous random variable with the probability density function

$$
f(x)=\left\{\begin{array}{lc}
(1 / \pi) x \sin x & \text { if } 0<x<\pi \\
0 & \text { otherwise }
\end{array}\right.
$$

Prove that

$$
E\left(X^{n+1}\right)+(n+1)(n+2) E\left(X^{n-1}\right)=\pi^{n+1} .
$$

$E\left(X^{n+1}\right)$ is the $(n+1)$ th moment of X.

Question 4.

Let X be a uniform random variable over the interval (a, b). Find the characteristic function of X .

Question 5.

Let X be a geometric random variable with parameter p. Find the characteristic function of X .

Question 6.

Let X be a gamma random variable with parameters r and λ. Derive a formula for its characteristic function $\psi(\omega)$, and use it to calculate $E(X)$ and $\operatorname{Var}(X)$.

Question 7.

Assume X and Y are two random variables. (X, Y) takes on three values $(1,0),(0,1)$ and $(1,1)$ with probability $1 / 3$ each. If $F_{X, Y}(x, y)$ is the joint cdf of X and Y, Calculate $F_{X, Y}(0,0), F_{X, Y}(2,0.5)$, $F_{X, Y}(0.75,3)$ and $F_{X, Y}(1.5,1.5)$.

Question 8.

Two dices are rolled. The sum of the outcomes is denoted by X and the absolute of their difference by Y. Calculate the joint probability mass function of X and Y and the marginal probability functions of X and Y.

