ECSE-305 (Fall 2004) Probability and Random Signals I

Assignment 1

September	8,	2004
-----------	----	------

		Q#	Marks
		1.	
		2.	
		3.	
Student Name:	ID:	4.	
1		5.	
2	Section:	6.	
		7.	
		8.	
	Section:	9.	
		10.	
		Total	

Question 1.

Suppose that the loss in a certain investment, in thousand of dollars, is a continuous random variable X that has a density function of the form

$$f(x) = \begin{cases} k(2x - 3x^2) & -1 < x < 0\\ 0 & \text{elsewhere.} \end{cases}$$

(a) Calculate the value of *k*.

(b) Find the probability that the loss is at most \$500.

Question 2.

Let *X* be a continuous random variable with density and distribution functions *f* and *F*, respectively. Assuming that $\alpha \in \mathbf{R}$ is a point at which $P(X \le \alpha) < 1$, prove that

$$h(x) = \begin{cases} f(x)/[1 - F(\alpha)] & \text{if } x \ge \alpha \\ 0 & \text{if } x \ge \alpha \end{cases}$$

is also a probability density function.

Question 3.

Let *X* be a continuous random variable with distribution function *F* and density function *f*. Calculate the density function of the random variable $Y = e^{X}$.

Question 4.

Let *X* be a random variable with the probability density function given by

$$f(x) = \begin{cases} e^{-x} & \text{if } x \ge 0\\ 0 & \text{elsewhere.} \end{cases}$$

Let

$$Y = \begin{cases} X & \text{if } X \le 1\\ 1/x & \text{if } X > 1 \end{cases}$$

Find the probability density function of *Y*.

Question 5.

Let X be a continuous random variable with the density function

$$f(x) = \begin{cases} 3e^{-x} & \text{if } x > 0\\ 0 & \text{otherwise.} \end{cases}$$

Using the method of transformations, find the probability density function of $Y = \log_2 X$.

Question 6.

Let X be a random variable with probability density function

$$f(x) = \frac{1}{2}e^{-|x|}, \quad -\infty < x < \infty$$

Calculate Var(X).

Question 7.

Let *X* be a random variable with density function

$$f(x) = \frac{e^{-|x|}}{2}, \quad -\infty < x < \infty$$

Find P(-2 < X < 1).

Question 8.

Let *X* be a continuous random variable with distribution function *F* and density function *f*. Find the distribution function and the density function of Y = |X|.