ECSE-305 (Fall 2005)

Probability and Random Signals I

Assignment 4

September 30, 2005

Student Name:

1. \qquad
\qquad
Section:
\qquad
2. \qquad ـ_

Section:
\qquad

$\mathrm{Q} \#$	Marks
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
Total	

Question 1.

A random variable X is symmetric about 0 if for all $x \in \mathbf{R}$,

$$
P(X \geq x)=P(X \leq-x)
$$

Prove that if X is symmetric about 0 , then for all $t>0$ its distribution function F satisfies the following relations:
(a) $P(|X| \leq t)=2 F(t)-1$
(b) $P(|X|>t)=2[1-F(t)]$
(c) $P(X=t)=F(t)+F(-t)-1$

Question 2.

Let the time until a new car breaks down be denoted by X, and let

$$
Y= \begin{cases}X & \text { if } X \leq 5 \\ 5 & \text { if } X>5\end{cases}
$$

Then Y is the life of the car, if it lasts less than 5 years, and is 5 if it lasts longer than 5 years. Calculate the distribution function of Y in terms of F, the distribution function of X.

Question 3.

In successive rolls of a fair die, let X be the number of rolls until the first 6 appears. Determine the probability mass function and the distribution function of X.

Question 4.

Let X be a random point selected from the interval $(0,1)$. Calculate F, the distribution function of $Y=X /(1+X)$, and sketch its graph.

Question 5.

A box contains 20 fuses, of which five are defective. What is the expected number of defective items among three fuses selected randomly?

Question 6.

If X is a random number selected from the first 10 positive integers, what is $E[X(11-X)]$?

Question 7.

An urn contains five balls, two of which are marked $\$ 1$, two $\$ 5$, and one $\$ 15$. A game is played by paying $\$ 10$ for winning the sum of the amount marked on two balls selected randomly from the urn. Is this a fair game?

Question 8.

(a) Show that

$$
p(n)=\frac{1}{n(n+1)} \quad n \geq 1
$$

is a probability mass function
(b) Let X be a random variable with probability mass function p given in part (a); find $E(X)$.

