ECSE-305 (Fall 2005)

Probability and Random Signals I

Assignment 10

November 16, 2005

Student Name:

1. \qquad
ID:
\qquad
Section:
\qquad
2. \qquad ـ_

Section:
\qquad

$\mathrm{Q} \#$	Marks
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
Total	

Question 1.

Let X and Y be random variables having joint density function

$$
f(x, y)=\left\{\begin{array}{lr}
2 & \text { for } 0 \leq x \leq 1,0 \leq y \leq x \\
0 & \text { otherwise }
\end{array}\right.
$$

Define $Z=2 X+Y$. Determine density and distribution function of Z.

Question 2.

Let X and Y be independent random variables with common probability density function

$$
f(x)= \begin{cases}e^{-x} & \text { if } x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the joint probability density function $U=X+Y$ and $V=\mathrm{e}^{X}$.

Question 3.

Let X and Y have joint probability density function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{3}{2}\left(x^{2}+y^{2}\right) & \text { if } 0 \leq x \leq 1,-1 \leq y \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find $E\left(X^{2}+Y^{2}\right)$ and $E\left(X+e^{-Y}\right)$.

Question 4.

From an ordinary deck of 52 cards, four cards are drawn at random and without replacement. Let X and Y be the number of hearts and the number of spades drawn, respectively.
(a) Find the joint probability function of X and Y.
(b) Calculate the average (expected) sum of the drawn hearts and spades in these four cards, i.e. $E(X+Y)$.

Question 5.

A fair die is thrown n times. What is the covariance and correlation coefficient of the number of 1 's and the number of 6's obtained?

Question 6.

(a) Let $X_{1}, X_{2}, \ldots, X_{\mathrm{n}}$ be independent exponential random variable with means $1 / \lambda_{1}, 1 / \lambda_{2}, \ldots, 1 / \lambda_{\mathrm{n}}$, respectively. Find the probability distribution of $X=\min \left(X_{1}, X_{2}, \ldots, X_{\mathrm{n}}\right)$.
(b) An item has n parts, each with an exponentially distributed lifetime with mean $1 / \lambda$. If the failure of one part makes the item fail, what is the average lifetime of the item?

Question 7.

Let X, Y and Z be positive independent random variables with the identical probability density function e^{-x} for $x>0$. Find the joint probability function of $U=X+Y, V=X+Z$ and $W=Y+Z$.

Question 8.

Let $X_{1}, X_{2}, \ldots, X_{\mathrm{n}}$ be n independent random numbers from the interval $(0,1)$. Find $E\left(\max _{1 \leq i \leq n} X_{i}\right)$, $E\left(\min _{1 \leq i \leq n} X_{i}\right)$ and $E\left(\sum_{i=1}^{n} X_{i}\right)$.

