ECSE-305 (Fall 2004) Probability and Random Signals I

Assignment 1

September	8,	2004
-----------	----	------

		Q#	Marks
		1.	
		2.	
		3.	
Student Name:	ID:	4.	
1		5.	
2	Section:	6.	
		7.	
		8.	
	Section:	9.	
		10.	
		Total	

Question 1.

Let X and Y be random variables having joint density function

$$f(x, y) = \begin{cases} 2 & \text{for } 0 \le x \le 1, \ 0 \le y \le x \\ 0 & \text{otherwise.} \end{cases}$$

Define Z = 2 X + Y. Determine density and distribution function of Z.

Question 2.

Let X and Y be independent random variables with common probability density function

$$f(x) = \begin{cases} e^{-x} & \text{if } x > 0\\ 0 & \text{elsewhere.} \end{cases}$$

Find the joint probability density function U = X + Y and $V = e^{X}$.

Question 3.

Let X and Y have joint probability density function

$$f(x, y) = \begin{cases} \frac{3}{2} (x^2 + y^2) & \text{if } 0 \le x \le 1, -1 \le y \le 1 \\ 0 & \text{elsewhere.} \end{cases}$$

Find $E(X^2 + Y^2)$ and $E(X + e^{-Y})$.

Question 4.

From an ordinary deck of 52 cards, four cards are drawn at random and without replacement. Let X and Y be the number of hearts and the number of spades drawn, respectively.

- (a) Find the joint probability function of *X* and *Y*.
- (b) Calculate the average (expected) sum of the drawn hearts and spades in these four cards, i.e. E(X + Y).

Question 5.

A fair die is thrown *n* times. What is the covariance and correlation coefficient of the number of 1's and the number of 6's obtained?

Question 6.

(a) Let $X_1, X_2, ..., X_n$ be independent exponential random variable with means $1/\lambda_1, 1/\lambda_2, ..., 1/\lambda_n$, respectively. Find the probability distribution of $X = \min(X_1, X_2, ..., X_n)$.

(b) An item has *n* parts, each with an exponentially distributed lifetime with mean $1/\lambda$. If the failure of one part makes the item fail, what is the average lifetime of the item?

Question 7.

Let X, Y and Z be positive independent random variables with the identical probability density function e^{-x} for x > 0. Find the joint probability function of U = X + Y, V = X + Z and W = Y + Z.

Question 8.

Let $X_1, X_2, ..., X_n$ be *n* independent random numbers from the interval (0, 1). Find $E(\max_{1 \le i \le n} X_i)$,

 $E(\min_{1 \le i \le n} X_i)$ and $E(\sum_{i=1}^n X_i)$.