ECSE-305, Winter 2009
 Probability and Random Signals I
 Assignment \#8

Posted: Thursday, March 19, 2009.
Due: Thursday, March 26, 2009, 2h30pm.
Important notes:

- Assignments without this cover page will be discarded.

Student \#1:

Name: \qquad
ID: \qquad

Student \#2:
Name: \qquad
ID: \qquad

Question	Marks
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
Total	

1. The joint PDF of random variables X and Y is given by

$$
f(x, y)= \begin{cases}c x^{k} y^{l}, & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

where k and l are positive integers.
(a) Find an expression for the constant c in terms of k and l
(b) Find a necessary condition on the values of k and l such that $P(Y>X)>1 / 2$.
(c) Find the marginal PDFs of X and Y.
2. Using an appropriate software package (e.g. Matlab), sketch the 3D graph of the joint normal PDF $N\left(\mu_{X}, \mu_{Y}, \rho, \sigma_{X}^{2}, \sigma_{Y}^{2}\right)$ for the following parameter values (note: hand-drawing will not be accepted):
(a) $\mu_{X}=\mu_{Y}=0, \sigma_{X}=\sigma_{Y}=1$ and $\rho=0$; ;
(b) $\mu_{X}=1, \mu_{Y}=1 / 2, \sigma_{X}=\sigma_{Y}=1$ and $\rho=0$; ;
(c) $\mu_{X}=\mu_{Y}=0, \sigma_{X}=1, \sigma_{Y}=2$ and $\rho=0$;
(d) $\mu_{X}=\mu_{Y}=0, \sigma_{X}=\sigma_{Y}=1$ and $\rho=0.5$.
3. Prove Theorem 9.4 in the class notes.
4. From an ordinary deck of cards, 8 cards are drawn at random and without replacement. Let X and Y be the number of clubs and spades respectively. Determine whether or not X and Y are independent.
5. Let X and Y be uniformly distributed over the region $D=[a, b] \times[c, d]$ where a, b, c and d are unspecified constants.
(a) Find the joint $\operatorname{PDF} f(x, y)$ and sketch it in 3 dimensions.
(b) Find and sketch the joint CDF of X and Y.
(c) Determine whether or not X and Y are independent.
6. Let X and Y be two independent, zero-mean Gaussian RV with variance σ^{2}. Define the polar coordinates

$$
R=\sqrt{X^{2}+Y^{2}} \in[0, \infty), \quad \Theta=\angle(X, Y) \in[0,2 \pi) .
$$

- Find the joint PDF of R and Θ.
- Find the marginal PDFs of R and Θ.

7. Let X and Y be two independent exponential random variables with parameter λ. Obtain an expression for the CDF of $Z=\max (X, Y)$.
8. Let the joint probability density function of X and Y be bivariate normal. For what values of α is the variance of $\alpha X+Y$ minimum.
9. Let the joint probability density function of X and Y be given by

$$
f(x, y)=\left\{\begin{array}{cc}
2 e^{-(x+2 y)} & \text { if } x \geq 0, y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find $E\left(X^{2} Y\right)$.
10. If Θ is a random number from the interval $[0,2 \pi]$, are the dependent random variables $X=\sin \Theta$ and $Y=\cos \Theta$ correlated? Why or why not?

