ECSE-305, Winter 2009
 Probability and Random Signals I
 Assignment \#7

Posted: Tuesday, March 12, 2009.
Due: Tuesday, March 19, 2009, 2h30pm.
Important notes:

- Assignments without this cover page will be discarded.

Student \#1:

Name: \qquad
ID: \qquad

Student \#2:
Name: \qquad
ID: \qquad

Question	Marks
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
Total	

1. Suppose that for any positive integer n, the nth moment of a random variable X, is given by $E\left(X^{n}\right)=(n+1)!2^{n}$. Obtain a closed form expression for $\psi(\omega)$, the characteristic function of X.
2. Let X be a a continuous RV with the probability density function $f(x)=6 x(1-x)$, if $0 \leq x \leq 1$ and 0 elsewhere.
(a) Find the characteristic function of X.
(b) Using the characteristic function, find $E(X)$.
3. Using the moment-generating function of a poisson random variable X with parameter λ, find $E(X)$ and $\operatorname{Var}(X)$.
4. Let $\psi_{X}(\omega)=1 /(1+j \omega)$ be the moment-generating function of a random variable X. Find the moment-generating function of the random variable $Y=2 X+1$.
5. Let the joint probability mass function of two jointly distributed discrete RVs X and Y be

$$
p(i, j)=\left\{\begin{array}{cl}
k(i+j) & \text { if } i, j \in\{1,2,3\} \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) Find the value of the constant k.
(b) Calculate $P(X=1, Y<3), P(X=1, Y \leq 3), P(X=2)$, $P(X<Y), P(X \leq Y)$.
6. Let the joint PMF of discrete RVs X and Y be

$$
p(i, j)=\left\{\begin{array}{cl}
k\left(i^{2}+j^{2}\right) & \text { if }(i, j) \in\{(1,1),(1,3),(2,3)\} \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) Find the value of the constant k.
(b) Find the marginal PMFs of X and Y.
7. The joint probability density function of random variables X and Y is given by

$$
f(x, y)= \begin{cases}2 & \text { if } 0 \leq y \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Calculate the marginal PDFs of X and Y.
(b) Calculate $P(X<1 / 2), P(X<2 Y)$, and $P(X=Y)$.
8. On a line segment $A B$ of length l, two points C and D are placed at random and independently. What is the probability that C is closer to D than to A ?
9. Two RVs X and Y are jointly uniform on $[0,1]^{2}$. Calculate the probability $P\left(Y \leq X\right.$ and $\left.X^{2}+Y^{2} \leq 1\right)$.

