ECSE-305, Winter 2009
 Probability and Random Signals I
 Assignment \#5

Posted: Tuesday, Feb. 10, 2009.
Due: Tuesday, Feb. 17, 2009, 2h30pm (in class).
Important notes:

- Do NOT use the assignment box in Trottier anymore.
- Assignments without this cover page will be discarded.

Student \#1:

Name: \qquad
ID: \qquad

Student \#2:
Name: \qquad
ID: \qquad

Question	Marks
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
Total	

1. A certain basketball player makes a foul shot with probability 0.45 . What is the probability that (a) his first basket occurs later than the sixth shot; (b) his first basket occur on his fourth shot and his second basket occur before his eight shot?
2. Suppose that jury members decide independently, and that each with probability $p(0<p<1)$ makes the correct decision. If the decision of the majority is final, which is preferable, a three-person jury or a single juror. (Hint: you want to maximize the probability of a correct decision; the answer depends on p).
3. The ECE Department of a certain University has 45 faculty members. For $i=0,1,2,3$, find p_{i}, the probability that i of them were born on January 1st
(a) using the Binomial distribution;
(b) using the Poisson distribution.
4. A mother ask her daughters to clean the dishes after diner. Since she does not specify which of the three daughters is to do the job, each girl tosses a coin to determine the odd person, who must then clean the dishes. In the case that all three get heads or tails, they continue tossing until they reach a decision. Let p be the probability of heads and $q=1-p$.
(a) Find the probability that they reach a decision in less than n tosses.
(b) If $p=1 / 2$, what is the minimum number of tosses required to reach a decision with probability 0.95 ?
5. Negative binomial RVs are generalizations of geometric RVs. Consider a sequence of identical, independent Bernouilli trials, each with probability of success $0<p<1$. Let X be the number of trials until the r th success, where $r \in \mathbb{N}$ is a given integer. RV X is called a negative binomial with parameters (r, p).
(a) Find the range \mathcal{R}_{X} of X, i.e. the set of possible values of X.
(b) Derive an expression for the PMF of X.
(c) Bill and Monica are playing a series of backgammon games until one of them wins five games. Suppose that the games are independent and the probability that Bill wins a game is 0.42 . Find the probability that the series and in 8 games.
6. The CDF of a random variable X is:

$$
F(x)= \begin{cases}0 & x<0 \\ \frac{1}{4} x & 0 \leq x<4 \\ 1 & x \geq 4\end{cases}
$$

(a) Explain why X is a continuous RV.
(b) Find the PDF of X.
(b) Find the following probabilities using the PDF of X :

$$
\begin{array}{lll}
P(X \geq 5) & P(X<0) & P(X \leq 0) \\
P\left(\frac{1}{4} \leq X<1\right) & P\left(\frac{1}{4} \leq X \leq 1\right) & P\left(X>\frac{1}{2}\right)
\end{array}
$$

7. Let X denote the life time of a radio, in years, manufactured by a certain company. The density function of X is given by

$$
f(x)= \begin{cases}\frac{1}{15} e^{-x / 15} & 0 \leq x<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

What is the probability that, of eight such radios, at least four last more than 15 years?
8. Let X be a random variable with the density function

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}, \quad-\infty<x<\infty
$$

Find the density function of $Z=\arctan X$.
9. Let X be a random variable with the probability density function given by

$$
f(x)= \begin{cases}e^{-x} & x \geq 0 \\ 0 & \text { elsewhere }\end{cases}
$$

Let

$$
Y=\left\{\begin{array}{cl}
X & \text { if } X \leq 1 \\
\frac{1}{X} & \text { if } X>1
\end{array}\right.
$$

Find the probability density function of Y.

