ECSE-305, Winter 2009 Probability and Random Signals I Assignment #10

Posted: Thursday, April 2, 2009.

Due: Tuesday, April 14, 2009, 11h00am, MC756.

Notes: Assignments without this cover page will be discarded.

	Question	Marks
	1.	
	2.	
	3.	
Student #1:	4.	
Name:	5.	
ID:	6.	
	7.	
Student #2:	8.	
Name: ID:	9.	
	10.	
	Total	

1. Let X_1, X_2, \ldots be independent and identically distributed (i.i.d.) random variables with $P(X_n = 1) = p$ and $P(X_n = -1) = q = 1 - p$, for all *n*. Define

$$Y_n = \sum_{i=1}^n X_i \quad n = 1, 2, \dots$$

and $Y_0 = 0$. The collection of RVs $\{Y_n : n \ge 0\}$ is a random process, called a *random walk*.

- (a) What type of process is Y_n ? Identify the index parameter T and the state space Ω .
- (b) Construct a typical realization of Y_n in the case p = 1/2. (Hint: use a coin...)
- (c) Find the mean and variance function, i.e. $\mu_Y(n)$ and $\sigma_Y^2(n)$, of the process Y_n .
- 2. Consider a random process X(t) defined by

$$X(t) = A\sin(2\pi Ft), \quad t \ge 0$$

where the amplitude A is a discrete RV with P(A = 1) = P(A = -1) = 1/2, and the frequency F is a discrete RV with P(F = 1) = P(F = 2) = 1/2.

- (a) What type of process is X(t)? Identify the index parameter T and the state space Ω .
- (b) Illustrate all the possible realizations of X(t).
- (c) Find the mean function $\mu_X(t)$ of the process X(t). Assume that RVs A and F are independent.
- 3. Let \mathcal{H} denote a low pass filter with impulse response

$$h(t) = \begin{cases} e^{-t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

Assume that the input to the filter, say X(t), is a WSS process with mean $\mu_X = 0$ and autocorrelation function $R_X(\tau) = \delta(\tau)$.

(a) Find the autocorrelation function of the output process Y(t).

- (b) Find the power spectral density of Y(t).
- 4. Random process X(t) is defined by

$$X(t) = A\cos(\omega t + B), \quad t \in \mathbb{R}$$

where A is a normal RV with zero-mean and unit variance, B is uniform over $[0, 2\pi)$, A and B are independent, and ω is a deterministic angular frequency. Determine whether or not X(t) is wide sense stationary?

- 5. Prove theorem 13.2 in the class notes.
- 6. A dentist's office opens at 9h00am, after which patients arrive according to a Poisson process with rate $\lambda = 0.1$ per minute. The dentist will only start seeing patients when at least 3 of them are in the waiting room.
 - (a) Find the expected time at which the dentist will see the first patient.
 - (b) What is the probability that the dentist will see the first patient only after 10h00am?
- 7. Random variables X and Y have a joint PMF described by the following table:

p(x,y)	y = -1	y = 0	y = 1
x = -1	3/16	1/16	0
x = 0	1/6	1/6	1/6
x = 1	0	1/8	1/8

- (a) Are X and Y independent? Explain.
- (b) Suppose that the values of X and Y are derived from a sequential experiment: first, X is found, then Y is found. Illustrate this experiment by means of a tree diagram and label each branch with the corresponding (numerical) value of the transition probability.
- 8. Let the joint PMF of discrete RVs I and J be given by

$$p(i,j) = \begin{cases} c(i^2 + j^2), & i = 0, \pm 1 \text{ and } j = 0, \pm 1 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find the constant c.
- (b) Find the conditional PMF $p_{I|J}(i|j)$ for $j \in \{0, \pm 1\}$.
- (c) Find P(|I| = 1|J = 0).
- 9. Let X and Y be random variables with joint PDF

$$f(x,y) = \begin{cases} 6y, & 0 \le y \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

- (a) Find the marginal PDF of $f_X(x)$.
- (b) Find the conditional PDF $f_{Y|X}(y|x)$. For what values of x is $f_{Y|X}(y|x)$ defined.
- (c) Find $P(Y \le \frac{1}{4}|X = \frac{1}{2})$.
- (d) Find the conditional expected value E[Y|X = x].