7.1

Consider a sequence of independent random variables $\left\{X_{k} ; 1 \leq k\right\}$ such that X_{k} is uniformly distributed on the interval $[-k, k]$. Define:

$$
Y_{n}=\sum_{k=1}^{n} X_{k}, \quad Z_{n}=\sum_{k=1}^{n}(-1)^{k} X_{k}
$$

Show by the use of characteristic functions that Y_{n} and Z_{n} have identical distributions for all $\{n ; 1 \leq n\}$.

Solution:

Since X_{i} are independent random variables and uniformly distributed on the interval $[-k, k]$, the characteristic functions are given by

$$
\Phi_{X_{i}}(w)=\int_{-k}^{k} e^{j w x} \frac{1}{2 k} d x=\frac{e^{j w k}-e^{-j w k}}{2 k j w}
$$

which are even functions since $\Phi_{X_{i}}(w)=\Phi_{X_{i}}(-w)$.
Given $Y_{n}=\sum_{k=1}^{n} X_{k}$,

$$
\begin{aligned}
\Phi_{Y_{n}}(w) & =E\left(\exp ^{j w Y_{n}}\right)=E\left(\exp ^{j w\left(X_{1}+X_{2}+\cdots+X_{n}\right)}\right) \\
& =E\left(\exp ^{j w X_{1}}\right) E\left(\exp ^{j w X_{2}}\right) \cdots E\left(\exp ^{j w X_{n}}\right) \\
& =\Phi_{X_{1}}(w) \Phi_{X_{2}}(w) \cdots \Phi_{X_{n}}(w) .
\end{aligned}
$$

Given $Z_{n}=\sum_{k=1}^{n}(-1)^{k} X_{k}$,

$$
\begin{aligned}
\Phi_{Z_{n}}(w) & =E\left(\exp ^{j w Z_{n}}\right)=E\left(\exp ^{j w\left(-X_{1}+X_{2}+\cdots+(-1)^{n} X_{n}\right)}\right) \\
& =E\left(\exp ^{-j w X_{1}}\right) E\left(\exp ^{j w X_{2}}\right) \cdots E\left(\exp ^{(-1)^{n} j w X_{n}}\right) \\
& =\Phi_{X_{1}}(-w) \Phi_{X_{2}}(w) \cdots \Phi_{X_{n}}\left((-1)^{n} w\right)
\end{aligned}
$$

Since each Φ_{i} is an even function of w, we have

$$
\Phi_{Z_{n}}(w)=\Phi_{X_{1}}(w) \Phi_{X_{2}}(w) \cdots \Phi_{X_{n}}(w)
$$

that is to say $\Phi_{Z_{n}}(w)=\Phi_{Y_{n}}(w)$.
And because distribution functions are in one to one relation with characteristic functions, we conclude that Y_{n} and Z_{n} have identical distributions.

7.2

(i) Let the exponentially distributed random variable X with parameter $\lambda>0$ model the waiting time until the random instant at which an event occurs:

$$
P(X \leq t) \quad=\quad 1-e^{-\lambda t} \quad t \in R_{+}
$$

Show that X possesses the memoryless property:

$$
P(X>t+h \mid X>t)=P(X>h)
$$

This may be interpreted as the waiting process restarting from zero at any given time. [Hence, if the occurrence of an event is exponentially distributed, the fact that one has waited t seconds for it to happen has no influence on the probability whether you will see the event occur in the next h seconds. (This is viewed as bad by someone in an exponential bus queue; one's investment in waiting is of no value.)]
(ii) Give the characteristic function of the exponential waiting time distribution on $[0, \infty)$ with parameter $\lambda>0$.

A traveler at Trudeau International Airport must wait in two queues in ler at Trudeau International Airport must wait in two queues in series: first, the traveler must wait at the Check-in queue for his orler must wait at the Check-in queue for his or her airline; this has an exponentially distributed waiting time T_{λ}, with parameter $\lambda>0$; second, the traveler must wait in a queue in the ler must wait in a queue in the Security Zone with an exponentially distributed waiting time T_{μ}, with parameter $\mu>0$. It is assumed that T_{λ} and T_{μ} are independent random variables.
(iii) What is the characteristic function of the total waiting time $T_{\lambda}+T_{\mu}$?
(iv) Find the characteristic function of $2 T_{\lambda}$.
(v) By use of characteristic functions, or otherwise, show whether the density of $T_{\lambda}+T_{\mu}$ with $\mu=\lambda$ is the same as that of $2 T_{\lambda}$.
(vi) Find the second moment of $T_{\lambda}+T_{\mu}$.

Solution:

(i)

$$
\begin{aligned}
P(X>t+h \mid X>t) & =\frac{P(X>t+h, X>t)}{P(X>t)} \\
& =\frac{P(X>t+h)}{P(X>t)} \\
& =\frac{e^{-\lambda(t+h)}}{e^{-\lambda(t)}} \\
& =e^{-\lambda h} \\
& =P(X>h) .
\end{aligned}
$$

(ii)

$$
\Phi_{T_{\lambda}}(w)=\int_{-\infty}^{\infty} e^{j w t} \cdot f_{t}(t) d t=\int_{0}^{\infty} e^{j w t} \cdot \lambda \cdot e^{-\lambda t} d t=\frac{\lambda}{\lambda-j w} .
$$

(iii) Similar to part (i), we have

$$
\Phi_{T_{\mu}}(w)=\frac{\mu}{\mu-j w} .
$$

Since T_{λ} and T_{μ} are independent random variables, the characteristic function of the total waiting time $T_{\lambda}+T_{\mu}$ is

$$
\Phi_{T_{\lambda}+T_{\mu}}(w)=\Phi_{T_{\lambda}}(w) \cdot \Phi_{T_{\mu}}(w)=\frac{\lambda \mu}{(\lambda-j w)(\mu-j w)} .
$$

(iv)

$$
\Phi_{2 T_{\lambda}}(w):=E\left[e^{j w 2 T_{\lambda}}\right]=E\left[e^{j(2 w) T_{\lambda}}\right]=\Phi_{T_{\lambda}}(2 w)=\frac{\lambda}{\lambda-j(2 w)} .
$$

(v)

$$
\begin{aligned}
\left.\Phi_{T_{\lambda}+T_{\mu}}(w)\right|_{\mu=\lambda} & =\left.\frac{\lambda \mu}{(\lambda-j w)(\mu-j w)}\right|_{\mu=\lambda}=\frac{\lambda^{2}}{(\lambda-j w)^{2}} \\
& =\frac{\lambda^{2}}{\lambda^{2}-2 j \lambda \mu-w^{2}} \neq \Phi_{2 T_{\lambda}}(w)
\end{aligned}
$$

Hence their density functions could not be the same, since

$$
f_{x}(x)=(1 / 2 \pi) \int_{-\infty}^{\infty} \Phi_{x}(w) \cdot \exp (-j w x) d w
$$

(vi)

$$
\begin{aligned}
E X^{2} & =\left.\frac{1}{j^{2}} \frac{d^{2}}{d w^{2}} \Phi_{x}(w)\right|_{w=0} \\
& =\frac{2}{\mu^{2}}+\frac{2}{\lambda^{2}}+\frac{2}{\mu \lambda}
\end{aligned}
$$

7.3

For a random variable X with a probability density function $f_{X}(\cdot)$, let $Y=g(X)$, and consider the four cases:
(a) $g(x)=-x$, where X is uniformly distributed on $[-1,1]$,
(b) $g(x)=x^{3}$, where X is uniformly distributed on $[1,4]$,
(c) $g(x)=2|x|$, where X has the Gaussian density $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}}$,
(d) $g(x)=-|x+2|$, where X has the Gaussian density $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{1}{2} \frac{(x-1)^{2}}{\sigma^{2}}}$.

Find the formula for the probability density $f_{Y}(\cdot)$ of Y in each case at values of y for which $\frac{d y}{d x}$ exists and $\frac{d y}{d x} \neq 0$.

Solution:

(a) Given:

$$
f_{X}(x)=\left\{\begin{array}{lc}
\frac{1}{2}, & -1 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

$y=-x, x \in[-1,1]$, implies for $-1 \leq y \leq 1, x(y)=-y$.
The derivative for the particular solution is

$$
\frac{d x(y)}{d y}=-1
$$

Hence,

$$
f_{Y}(y)=f_{X}(x(y))\left|\frac{d x(y)}{d y}\right|=\left\{\begin{array}{cc}
\frac{1}{2}, & -1 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(b) Given:

$$
f_{X}(x)= \begin{cases}\frac{1}{3}, & 1 \leq x \leq 4 \\ 0, & \text { otherwise }\end{cases}
$$

For $1 \leq y \leq 64$,

$$
x(y)=\sqrt[3]{y}
$$

The derivative for the particular solution is

$$
\frac{d x(y)}{d y}=\frac{1}{3} y^{-\frac{2}{3}} .
$$

Hence,

$$
f_{Y}(y)=f_{X}(x(y))\left|\frac{d x(y)}{d y}\right|=\left\{\begin{array}{cl}
\frac{1}{9} y^{-\frac{2}{3}}, & 1 \leq y \leq 64 \\
0, & \text { otherwise }
\end{array}\right.
$$

(c) Given:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{x^{2}}{2 \sigma^{2}}}, \forall x
$$

For $y \geq 0$,

$$
x_{1}(y)=\frac{y}{2}, \quad \text { or } \quad x_{2}(y)=-\frac{y}{2} .
$$

However $\frac{d y}{d x}$ does not exist at $x=0$, so $y>0$.

Hence,

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(x_{1}(y)\right)\left|\frac{d x_{1}(y)}{d y}\right|+f_{X}\left(x_{2}(y)\right)\left|\frac{d x_{2}(y)}{d y}\right| \\
& =\left\{\begin{array}{cc}
\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{y^{2}}{8 \sigma^{2}}}, & y>0 \\
0, & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

(d) Given:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{(x-1)^{2}}{2 \sigma^{2}}}, \forall x
$$

For $y \leq 0, y=-|y|$.
So

$$
x_{1}(y)=-y-2, \quad \text { or } \quad x_{2}(y)=y-2 .
$$

However $\frac{d y}{d x}$ does not exist at $x=-2$, so $y<0$.
Hence,

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(x_{1}(y)\right)\left|\frac{d x_{1}(y)}{d y}\right|+f_{X}\left(x_{2}(y)\right)\left|\frac{d x_{2}(y)}{d y}\right| \\
& =\left\{\begin{array}{cc}
\frac{1}{\sqrt{2 \pi \sigma}}\left(\exp ^{-\frac{(y+3)^{2}}{2 \sigma^{2}}}+\exp ^{-\frac{(y-3)^{2}}{2 \sigma^{2}}}\right), & y<0 \\
0, & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

7.4

Assume each of the independent identically distributed scalar random variables $X_{i}, 1 \leq i<\infty$, has mean 0 and variance $\sigma^{2}=4$. For $\alpha>0$, consider the probability of the event :

$$
A=\left\{-\alpha \leq \frac{1}{n} \sum_{i=1}^{n} X_{i} \leq \alpha\right\}
$$

(i) Use the Central Limit Theorem, together with the notation $\Phi(x), x \in R$, for the distribution function of a normally distributed $N(0,1)$ random variable, to give a formula for an approximation to the probability that the average $Z_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ lies in the interval $[-\alpha, \alpha]$.
(ii) Let $\alpha=1$. Use the CLT based formula to find the smallest value of n for which the probability of A is at least: (a) 0.95 and (b) 0.9786 . (You may use the fact that for the Gaussian distribution $\Phi(-x)=1-\Phi(x), x \in R$, and may use any standard Gaussian distribution table; for instance in the course text this is given on page SG 632.)

Solution:

(i) By CLT,

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{X_{i}}{\sqrt{4}} \approx N(0,1)
$$

Therefore,

$$
\begin{aligned}
P\left(-\alpha \leq \frac{1}{n} \sum_{i=1}^{n} X_{i} \leq \alpha\right) & =P\left(-\frac{\alpha \sqrt{n}}{2} \leq \frac{1}{\sqrt{4 n}} \sum_{i=1}^{n} X_{i} \leq \frac{\alpha \sqrt{n}}{2}\right) \\
& \approx \Phi\left(\frac{\alpha \sqrt{n}}{2}\right)-\Phi\left(-\frac{\alpha \sqrt{n}}{2}\right) \\
& =2 \Phi\left(\frac{\alpha \sqrt{n}}{2}\right)-1
\end{aligned}
$$

(ii) When $\alpha=1$:
(a) $2 \Phi\left(\frac{\sqrt{n}}{2}\right)-1 \geq 0.95 \Rightarrow \Phi\left(\frac{\sqrt{n}}{2}\right) \geq 0.975 \Rightarrow \frac{\sqrt{n}}{2} \geq 1.96 \Rightarrow n \geq 15.37$

Since n is an integer, it has to be equal to or bigger than 16 .
(b) $2 \Phi\left(\frac{\sqrt{n}}{2}\right)-1 \geq 0.9786 \Rightarrow \Phi\left(\frac{\sqrt{n}}{2}\right) \geq 0.9893 \Rightarrow \frac{\sqrt{n}}{2} \geq 2.3 \Rightarrow n \geq 21.16$

Since n is an integer, it has to be equal to or bigger than 22 .

7.5

The random variable X has the Binomial distribution $B\left(N, \frac{1}{2}\right)$, i.e. it is the sum of N independent Bernoulli $\{+1,-1\}$ valued random variables $\left\{Y_{k} ; 1 \leq k \leq N\right\}$ each of which satisfies $P\left(Y_{k}=+1\right)=P\left(Y_{k}=-1\right)=\frac{1}{2}$.
(a) find $E X$,
(b) show whether $E\left(X^{2}\right)$ has the value N or $\frac{1}{2} N$,
(c) check you answer in (b) in the case $N=2$,
(d) use the Chebychev inequality to estimate $P(|X-E X|>N)$.

Hint: The Moment Theorem and the characteristic function $E e^{i X \omega}$ may be used in parts (a) and (b) if you wish.

Solution:

The characteristic function of $Y_{k}, k=1, \ldots, N$ is:

$$
\Phi_{Y_{k}}(\omega)=E\left(e^{j \omega Y_{k}}\right)=0.5 \cdot e^{j \omega}+0.5 \cdot e^{-j \omega}=\cos \omega
$$

Hence $X=\sum_{k=1}^{N} Y_{k}$, the characteristic function is:

$$
\begin{aligned}
\Phi_{X}(\omega) & =E\left(e^{j \omega \sum_{k=1}^{N} Y_{k}}\right)=E\left(\prod_{k=1}^{N} e^{j \omega Y_{k}}\right) \\
& =\prod_{k=1}^{N} E\left(e^{j \omega Y_{k}}\right) \\
& =\prod_{k=1}^{N} \cos \omega=\cos ^{N} \omega
\end{aligned}
$$

(a)

$$
E(X)=\left.\frac{1}{j} \frac{d}{d \omega}\left(\Phi_{X}(\omega)\right)\right|_{\omega=0}=\left.\frac{1}{j} \frac{d}{d \omega}\left(\cos ^{N} \omega\right)\right|_{\omega=0}=0
$$

(b)

$$
E\left(X^{2}\right)=\left.\frac{1}{j^{2}} \frac{d^{2}}{d \omega^{2}}\left(\Phi_{X}(\omega)\right)\right|_{\omega=0}=\left.\frac{1}{j^{2}} \frac{d^{2}}{d \omega^{2}}\left(\cos ^{N} \omega\right)\right|_{\omega=0}=N
$$

In case $N=2, X=Y_{1}+Y_{2}, E\left(Y_{k}^{2}\right)=1, E\left(Y_{k}\right)=0$;

$$
\begin{aligned}
E\left(X^{2}\right) & =E\left(\left(Y_{1}+Y_{2}\right)^{2}\right) \\
& =E\left(Y_{1}^{2}\right)+E\left(Y_{2}^{2}\right)+2 E\left(Y_{1} Y_{2}\right) \\
& =E\left(Y_{1}^{2}\right)+E\left(Y_{2}^{2}\right)+2 E\left(Y_{1}\right) E\left(Y_{2}\right) \\
& =2=N
\end{aligned}
$$

Verified!
(d) Using the Chebychev Inequality, we obtain:

$$
P(|X-E X|>N) \leq \frac{\sigma^{2}}{N^{2}}
$$

with $\sigma^{2}=E\left(X^{2}\right)-E(X)^{2}=N, E X=0$.
This yields

$$
P(|X|>N) \leq \frac{N}{N^{2}}=\frac{1}{N}
$$

