
ECSE 304-305B Assignment 7 Winter 2007

Return by 12.00 pm, 12th March

7.1

Consider a sequence of independent random variables {Xk; 1 ≤ k} such that Xk is uniformly

distributed on the interval [−k, k]. Define:

Yn =
n

∑

k=1

Xk, Zn =
n

∑

k=1

(−1)kXk

Show by the use of characteristic functions that Yn and Zn have identical distributions for

all {n; 1 ≤ n}.

Solution:

Since Xi are independent random variables and uniformly distributed on the interval [−k, k],

the characteristic functions are given by

ΦXi
(w) =

∫ k

−k
ejwx 1

2k
dx =

ejwk − e−jwk

2kjw
,

which are even functions since ΦXi
(w) = ΦXi

(−w).

Given Yn =
∑n

k=1 Xk,

ΦYn
(w) = E(expjwYn) = E(expjw(X1+X2+···+Xn))

= E(expjwX1)E(expjwX2) · · ·E(expjwXn)

= ΦX1(w)ΦX2(w) · · ·ΦXn
(w).

Given Zn =
∑n

k=1(−1)kXk,

ΦZn
(w) = E(expjwZn) = E(expjw(−X1+X2+···+(−1)nXn))

= E(exp−jwX1)E(expjwX2) · · ·E(exp(−1)njwXn)

= ΦX1(−w)ΦX2(w) · · ·ΦXn
((−1)nw)

Since each Φi is an even function of w, we have

ΦZn
(w) = ΦX1(w)ΦX2(w) · · ·ΦXn

(w),
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that is to say ΦZn
(w) = ΦYn

(w).

And because distribution functions are in one to one relation with characteristic functions,

we conclude that Yn and Zn have identical distributions.

7.2

(i) Let the exponentially distributed random variable X with parameter λ > 0 model the

waiting time until the random instant at which an event occurs:

P (X ≤ t) = 1 − e − λt t ∈ R+

Show that X possesses the memoryless property:

P ( X > t + h | X > t ) = P ( X > h ).

This may be interpreted as the waiting process restarting from zero at any given time.

[Hence, if the occurrence of an event is exponentially distributed, the fact that one has

waited t seconds for it to happen has no influence on the probability whether you will

see the event occur in the next h seconds. (This is viewed as bad by someone in an

exponential bus queue; one’s investment in waiting is of no value.)]

(ii) Give the characteristic function of the exponential waiting time distribution on [0,∞)

with parameter λ > 0.

A traveler at Trudeau International Airport must wait in two queues in ler at Trudeau

International Airport must wait in two queues in series: first, the traveler must wait at

the Check-in queue for his orler must wait at the Check-in queue for his or her airline;

this has an exponentially distributed waiting time Tλ, with parameter λ > 0; second,

the traveler must wait in a queue in the ler must wait in a queue in the Security Zone

with an exponentially distributed waiting time Tµ, with parameter µ > 0.

It is assumed that Tλ and Tµ are independent random variables.

(iii) What is the characteristic function of the total waiting time Tλ + Tµ?

(iv) Find the characteristic function of 2Tλ.
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(v) By use of characteristic functions, or otherwise, show whether the density of Tλ + Tµ

with µ = λ is the same as that of 2Tλ.

(vi) Find the second moment of Tλ + Tµ.

Solution:

(i)

P (X > t + h|X > t) =
P (X > t + h,X > t)

P (X > t)

=
P (X > t + h)

P (X > t)

=
e−λ(t+h)

e−λ(t)

= e−λh

= P (X > h).

(ii)

ΦTλ
(w) =

∫ ∞

−∞
ejwt · ft(t) dt =

∫ ∞

0
ejwt · λ · e−λtdt =

λ

λ − jw
.

(iii) Similar to part (i), we have

ΦTµ
(w) =

µ

µ − jw
.

Since Tλ and Tµ are independent random variables, the characteristic function of the total

waiting time Tλ + Tµ is

ΦTλ+Tµ
(w) = ΦTλ

(w) · ΦTµ
(w) =

λµ

(λ − jw)(µ − jw)
.

(iv)

Φ2Tλ
(w) := E

[

ejw2Tλ

]

= E
[

ej(2w)Tλ

]

= ΦTλ
(2w) =

λ

λ − j(2w)
.
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(v)

ΦTλ+Tµ
(w)

∣

∣

∣

µ=λ
=

λµ

(λ − jw)(µ − jw)

∣

∣

∣

∣

∣

µ=λ

=
λ2

(λ − jw)2

=
λ2

λ2 − 2jλµ − w2
6= Φ2Tλ

(w).

Hence their density functions could not be the same, since

fx(x) = (1/2π)
∫ ∞

−∞
Φx(w) · exp (−jwx) dw.

(vi)

EX2 =
1

j2

d2

dw2
Φx(w)

∣

∣

∣

∣

∣

w=0

=
2

µ2
+

2

λ2
+

2

µλ
.

7.3

For a random variable X with a probability density function fX(·), let Y = g(X), and

consider the four cases:

(a) g(x) = −x, where X is uniformly distributed on [−1, 1],

(b) g(x) = x3, where X is uniformly distributed on [1, 4],

(c) g(x) = 2|x|, where X has the Gaussian density fX(x) = 1√
2πσ

exp−
1
2

x2

σ2 ,

(d) g(x) = −|x + 2|, where X has the Gaussian density fX(x) = 1√
2πσ

exp−
1
2

(x−1)2

σ2 .

Find the formula for the probability density fY (·) of Y in each case at values of y for which

dy

dx
exists and dy

dx
6= 0.

Solution:

(a) Given:

fX(x) =











1
2
, −1 ≤ x ≤ 1

0, otherwise.
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y = −x, x ∈ [−1, 1], implies for −1 ≤ y ≤ 1, x(y) = −y.

The derivative for the particular solution is

dx(y)

dy
= −1.

Hence,

fY (y) = fX(x(y))

∣

∣

∣

∣

∣

dx(y)

dy

∣

∣

∣

∣

∣

=











1
2
, −1 ≤ y ≤ 1

0, otherwise.

(b) Given:

fX(x) =











1
3
, 1 ≤ x ≤ 4

0, otherwise.

For 1 ≤ y ≤ 64,

x(y) = 3
√

y.

The derivative for the particular solution is

dx(y)

dy
=

1

3
y− 2

3 .

Hence,

fY (y) = fX(x(y))

∣

∣

∣

∣

∣

dx(y)

dy

∣

∣

∣

∣

∣

=











1
9
y− 2

3 , 1 ≤ y ≤ 64

0, otherwise.

(c) Given:

fX(x) =
1√
2πσ

exp− x2

2σ2 ,∀x.

For y ≥ 0,

x1(y) =
y

2
, or x2(y) = −y

2
.

However dy

dx
does not exist at x = 0, so y > 0.
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Hence,

fY (y) = fX(x1(y))

∣

∣

∣

∣

∣

dx1(y)

dy

∣

∣

∣

∣

∣

+ fX(x2(y))

∣

∣

∣

∣

∣

dx2(y)

dy

∣

∣

∣

∣

∣

=











1√
2πσ

exp−
y2

8σ2 , y > 0,

0, otherwise.

(d) Given:

fX(x) =
1√
2πσ

exp−
(x−1)2

2σ2 ,∀x.

For y ≤ 0, y = −|y|.

So

x1(y) = −y − 2, or x2(y) = y − 2.

However dy

dx
does not exist at x = −2, so y < 0.

Hence,

fY (y) = fX(x1(y))

∣

∣

∣

∣

∣

dx1(y)

dy

∣

∣

∣

∣

∣

+ fX(x2(y))

∣

∣

∣

∣

∣

dx2(y)

dy

∣

∣

∣

∣

∣

=











1√
2πσ

(exp−
(y+3)2

2σ2 + exp−
(y−3)2

2σ2 ), y < 0,

0, otherwise.

7.4

Assume each of the independent identically distributed scalar random variables

Xi, 1 ≤ i < ∞, has mean 0 and variance σ2 = 4. For α > 0, consider the probability of the

event :

A = {−α ≤ 1
n

∑n
i=1 Xi ≤ α}

(i) Use the Central Limit Theorem, together with the notation Φ(x), x ∈ R, for the distri-

bution function of a normally distributed N(0, 1) random variable, to give a formula for an

approximation to the probability that the average Zn = 1
n

∑n
i=1 Xi lies in the interval [−α, α].
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(ii) Let α = 1. Use the CLT based formula to find the smallest value of n for which the

probability of A is at least: (a) 0.95 and (b) 0.9786. (You may use the fact that for the Gaus-

sian distribution Φ(−x) = 1−Φ(x), x ∈ R, and may use any standard Gaussian distribution

table; for instance in the course text this is given on page SG 632.)

Solution:

(i) By CLT,

1√
n

n
∑

i=1

Xi√
4
≈ N(0, 1)

Therefore,

P (−α ≤ 1

n

n
∑

i=1

Xi ≤ α) = P (−α
√

n

2
≤ 1√

4n

n
∑

i=1

Xi ≤
α
√

n

2
)

≈ Φ(
α
√

n

2
) − Φ(−α

√
n

2
)

= 2Φ(
α
√

n

2
) − 1

(ii) When α=1:

(a) 2Φ(
√

n

2
) − 1 ≥ 0.95 ⇒ Φ(

√
n

2
) ≥ 0.975 ⇒

√
n

2
≥ 1.96 ⇒ n ≥ 15.37

Since n is an integer, it has to be equal to or bigger than 16.

(b) 2Φ(
√

n

2
) − 1 ≥ 0.9786 ⇒ Φ(

√
n

2
) ≥ 0.9893 ⇒

√
n

2
≥ 2.3 ⇒ n ≥ 21.16

Since n is an integer, it has to be equal to or bigger than 22.

7.5

The random variable X has the Binomial distribution B(N, 1
2
), i.e. it is the sum of N

independent Bernoulli {+1,−1} valued random variables {Yk; 1 ≤ k ≤ N} each of which

satisfies P (Yk = +1) = P (Yk = −1) = 1
2
.

(a) find EX,

(b) show whether E(X2) has the value N or 1
2
N,

(c) check you answer in (b) in the case N = 2,
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(d) use the Chebychev inequality to estimate P (|X − EX| > N).

Hint: The Moment Theorem and the characteristic function EeiXω may be used in parts (a)

and (b) if you wish.

Solution:

The characteristic function of Yk, k = 1, ..., N is:

ΦYk
(ω) = E(ejωYk) = 0.5 · ejω + 0.5 · e−jω = cos ω

Hence X =
∑N

k=1 Yk, the characteristic function is:

ΦX(ω) = E(ejω
∑N

k=1
Yk) = E(

N
∏

k=1

ejωYk)

=
N
∏

k=1

E(ejωYk)

=
N
∏

k=1

cos ω = cosN ω

(a)

E(X) =
1

j

d

dω
(ΦX(ω))|ω=0 =

1

j

d

dω
(cosN ω)|ω=0 = 0

(b)

E(X2) =
1

j2

d2

dω2
(ΦX(ω))|ω=0 =

1

j2

d2

dω2
(cosN ω)|ω=0 = N

In case N = 2, X = Y1 + Y2, E(Yk
2) = 1, E(Yk) = 0;

E(X2) = E((Y1 + Y2)
2)

= E(Y1
2) + E(Y2

2) + 2E(Y1Y2)

= E(Y1
2) + E(Y2

2) + 2E(Y1)E(Y2)

= 2 = N

Verified!
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(d) Using the Chebychev Inequality, we obtain:

P (|X − EX| > N) ≤ σ2

N2
,

with σ2 = E(X2) − E(X)2 = N,EX = 0.

This yields

P (|X| > N) ≤ N

N2
=

1

N
.
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