Question 6.1

A positive scalar random variable X with a density is such that $E X=\mu<\infty, E X^{2}=\infty$.
(a) Using the Markov or Chebyshev inequalities, estimate $P\left(X^{2} \geq \alpha^{2}\right), \alpha>0$.
(b) Explain why the distribution function $F_{X}(x)=P(X \leq x), x \in \mathbb{R}$ is a continuous function of x.
(c) Show that there exist a real number $\gamma>0$ such that $e^{-\gamma}=P(X \leq \gamma)$
(d) Split an integral representing $E e^{-X}$ at $\gamma>0$, where γ is given in (c), and hence (justifying each step) give a lower bound for $E e^{-X}$ of the form $a e^{-2 \gamma}, a>0$. Determine a value for the positive number a.

Q6.1 Solution:

(a) Since X is a positive scalar R.V., and $\alpha>0, P\left(X^{2} \geq \alpha^{2}\right)=P(X \geq \alpha)$. Using Markov's Inequality, we get:

$$
P\left(X^{2} \geq \alpha^{2}\right) \leq \frac{\mu}{\alpha}
$$

(b) Since the density for R.V. X exists, the distribution function $F_{X}(x)=P(X \leq x), x \in \mathbb{R}$ is continuous since the integral of a function must be continuous (when it is finite).
(c) Consider the function $H(x)=F_{X}(x)-e^{-x}, x \geq 0 . H(x)$ is continuous and $H(0)=-1$ and $\lim _{x \rightarrow \infty} H(x)=1$.

Therefore, $\exists \gamma>0, H(\gamma)=0$, i.e. $P(X \leq \gamma)=e^{-\gamma}$
(d)

$$
\begin{aligned}
E e^{-X} & =\int_{0}^{\infty} e^{-x} f_{X}(x) d x \\
& =\int_{0}^{\gamma} e^{-x} f_{X}(x) d x+\int_{\gamma}^{\infty} e^{-x} f_{X}(x) d x \\
& \geq \int_{0}^{\gamma} e^{-x} f_{X}(x) d x, \text { since } e^{-x} \geq 0 \text { and } f_{X}(x) \geq 0 \\
& \geq e^{-\gamma} \int_{0}^{\gamma} f_{X}(x) d x, \text { since } e^{-x} \geq e^{-\gamma} \text { for } x \in(0, \gamma) \\
& =e^{-\gamma} P(X \leq \gamma) \\
& =e^{-2 \gamma}=a e^{-2 \gamma}, a=1
\end{aligned}
$$

Question 6.2

Find (a) the mean value μ, and (b) the variance σ^{2} of an RV X with the Laplace density

$$
f_{X}(x)=\frac{1}{2 b} e^{-2|x-m| / 2 b},
$$

where b and m are real constants, $b>0$ and $-\infty<m<\infty$.

Find the corresponding characteristic function $\Phi_{X}(\omega)$ and verify the values found above for μ, σ^{2} by use of the Moment Theorem.

Q6.2 Solution: We can find the mean and variance of X from a table or by integrating.

$$
\begin{aligned}
E X & =\int_{-\infty}^{\infty}(x-m+m) f_{X}(x) d x \\
& =\int_{-\infty}^{\infty}(x-m) \frac{1}{2 b} e^{-2|x-m| / 2 b} d x+\int_{-\infty}^{\infty} m f_{X}(x) d x \\
& =\int_{-\infty}^{\infty} y \frac{1}{2 b} e^{-2|y| / 2 b} d y+m \\
& =0+m \quad \text { (by symmetry of the integrand). }
\end{aligned}
$$

Integration by parts can be used to obtain $E X^{2}$. In the end, we find:

$$
\begin{gathered}
\mu=m \\
\sigma^{2}=2 b^{2}
\end{gathered}
$$

The characteristic function is given by:

$$
\Phi_{X}(\omega)=\int_{-\infty}^{\infty} e^{j \omega x} f_{X}(x) d x=\int_{-\infty}^{\infty} e^{j \omega x} \frac{1}{2 b} e^{-2|x-m| / 2 b} d x
$$

Using the hint, we set the parameter $\mathrm{m}=0$, making X a zero-mean R.V. The characteristic function in this case is given by:

$$
\begin{aligned}
\Phi_{X}(\omega) & =\int_{-\infty}^{\infty} e^{j \omega x} \frac{1}{2 b} e^{-2|x| / 2 b} d x \\
& =\frac{1}{2 b} \int_{-\infty}^{0} e^{x\left(\frac{1}{b}+j \omega\right)} d x+\frac{1}{2 b} \int_{0}^{\infty} e^{x\left(-\frac{1}{b}+j \omega\right)} d x \\
& =\frac{1}{2 b}\left(\left.\frac{1}{\frac{1}{b}+j \omega} e^{x\left(\frac{1}{b}+j \omega\right)}\right|_{-\infty} ^{0}-\left.\frac{1}{-\frac{1}{b}+j \omega} e^{x\left(-\frac{1}{b}+j \omega\right)}\right|_{0} ^{\infty}\right) \\
& =\frac{1}{2 b}\left(\frac{1}{\frac{1}{b}+j \omega}+\frac{1}{\frac{1}{b}-j \omega}\right) \\
& =\frac{1}{1+b^{2} \omega^{2}}
\end{aligned}
$$

Now for a R.V. X of mean m, and using the formula on page 8 of the Lecture to account for the shift, the characteristic function becomes:

$$
\Phi_{X}(\omega)=\frac{e^{j m \omega}}{1+b^{2} \omega^{2}} .
$$

By the moment theorem,

$$
\begin{aligned}
E X & =\left.(1 / j) \frac{d}{d \omega} \frac{e^{j m \omega}}{1+b^{2} \omega^{2}}\right|_{\omega=0} \\
& =\left.(1 / j)\left(\frac{-2 b^{2} \omega}{\left(1+b^{2} \omega^{2}\right)^{2}} e^{j m \omega}+\frac{j m e^{j m \omega}}{1+b^{2} \omega^{2}}\right)\right|_{\omega=0} \\
& =m .
\end{aligned}
$$

By taking one more derivative, we find

$$
\begin{aligned}
E X^{2}= & -\left.\frac{d}{d \omega}\left(\frac{-2 b^{2} \omega}{\left(1+b^{2} \omega^{2}\right)^{2}} e^{j m \omega}+\frac{j m e^{j m \omega}}{1+b^{2} \omega^{2}}\right)\right|_{\omega=0} \\
= & -\left(\frac{-\left(2 b^{2}\right)\left(1+b^{2} \omega^{2}\right)^{2}+2 b^{2} \omega\left(1+b^{2} \omega^{2}\right)\left(2 b^{2} \omega\right)}{\left(1+b^{2} \omega^{2}\right)^{4}} e^{j m \omega}+\frac{-2 b^{2} \omega}{\left(1+b^{2} \omega^{2}\right)^{2}}(j m) e^{j m \omega}\right. \\
& \left.+\frac{-2 b^{2} \omega}{\left(1+b^{2} \omega^{2}\right)^{2}}(j m) e^{j m \omega}+\frac{1}{\left(1+b^{2} \omega^{2}\right)^{2}}(j m)^{2} e^{j m \omega}\right)\left.\right|_{\omega=0} \\
= & 2 b^{2}+m^{2} .
\end{aligned}
$$

Hence, the variance is $2 b^{2}$.

Question 6.3

(a) The exponential random variable Z has the density $f_{Z}(\cdot)=\left\{5 \mu e^{-5 \mu z}, z \in R_{+}, \mu>0\right\}$. Find the characteristic function $\Phi_{Z}(\omega), \omega \in R$.
(b) Let the random variable W be defined by $W=3\left(Z_{1}\right)-3\left(Z_{2}\right)$, where Z_{1} and Z_{2} are independent identically distributed exponential random variables with parameter λ. Find $\Phi_{W}(\omega), \omega \in R$.
(c) Using the one-to-one relation of characteristic functions and densities and part (b), find the density of W. (Hint: check Question 2.)

Q6.3 Solution:

(a) We can obtain the characteristic function from a table or by integration. Let's integrate.

$$
\Phi_{Z}(w)=\int_{0}^{\infty} e^{j t x} 5 \mu e^{-5 \mu x} d x=\frac{5 \mu}{5 \mu-j w} .
$$

(b) First, observe that the characteristic function of $-3 Z_{2}$ is

$$
\Phi_{-3 Z_{2}}(w)=\Phi_{Z_{2}}(-3 w),
$$

by the scaling property seen earlier. By independence, we have

$$
\begin{aligned}
\Phi_{W}(w) & =\Phi_{3 Z_{1}}(w) \Phi_{-3 Z_{2}}(w) \\
& =\Phi_{Z_{1}}(3 w) \Phi_{Z_{2}}(-3 w) \\
& =\frac{\lambda}{\lambda-j 3 w} \frac{\lambda}{\lambda+j 3 w} \\
& =\frac{\lambda^{2}}{\lambda^{2}+9 w^{2}}=\Phi_{X}(w) .
\end{aligned}
$$

(c) Since $\Phi_{W}(t)=\Phi_{X}(t)$, by the inversion formula, X and W have the same distribution if we let $\lambda=\frac{3}{b}$ and $m=0$. Hence, for all x

$$
f_{W}(x)=\frac{\lambda e^{-\frac{\lambda|x|}{3}}}{6}
$$

Question 6.4

Many people believe that the daily change of price of a company's stock on the stock market is a random variable with mean 0 and variance σ^{2}. That is, if Y_{n} represents the price of the stock on the nth day, then

$$
Y_{n}=Y_{n-1}+X_{n} \quad n \geq 1
$$

where X_{1}, X_{2}, \ldots are independent and identically distributed random variables with mean 0 and variance σ^{2}. Suppose that the stock's price today is 100 . If $\sigma^{2}=1$, what can you say about the probability that the stock's price will exceed 105 after 10 days?

Q6.4 Solution:

We have $Y_{10}=Y_{0}+\sum_{i=1}^{10} X_{i}, E\left(Y_{10}\right)=\mu=100$ and $E\left(\left(Y_{10}-\mu\right)^{2}\right)=\sigma^{2}=10$. We wish to apply Chebyshev's inequality

$$
P\left(\left|Y_{10}-\mu\right| \geq k \sigma\right) \leq \frac{1}{k^{2}}
$$

Noting the symmetry of Y_{10}, we can half Chebyshev's inequality, drop the absolute value and hence obtain a bound for $P\left(Y_{10}>105\right)$ (with $k=\frac{5}{\sqrt{10}}$)

$$
P\left(Y_{10}-100 \geq 5\right) \leq \frac{1}{2 k^{2}}=\frac{1}{5}
$$

