Question 4.1 (SG p. 152)

Let X be a random point be selected from the interval 0,3) (i.e. by the EPP, or, equivalently, such that X has a linearly increasing distribution function). What is the probability that $X^{2}-5 X+6>0$?

Question 4.1 (Solution) We have that

$$
F_{X}(x)= \begin{cases}0 & x<0 \\ \frac{x}{3} & 0 \leq x<3 \\ 1 & x \geq 3\end{cases}
$$

and since

$$
P\left(X^{2}-5 X+6>0\right)=1-P(2 \leq X \leq 3)
$$

we can compute $P\left(X^{2}-5 X+6>0\right)=1-\left(F_{X}(3)-F_{X}(2)\right)=\frac{2}{3}$

Question 4.2

For constants a and b, a random variable X has PDF

$$
f_{X}(x)= \begin{cases}a x^{2}+b x & 0 \leq x \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

What conditions on a and b are necessary and sufficient to guarantee that $f_{X}(x)$ is a valid PDF?

Question 4.2 (Solution)

For $f_{X}(x)$ to be a valid PDF, it needs to satisfy two conditions:

1. $f_{X}(x) \geq 0$ for $x \in[0,5]$.
2. $\int_{0}^{5} f_{X}(x) d x=1$.

From condition (2) we get,

$$
\begin{aligned}
1 & =\int_{0}^{5}\left(a x^{2}+b x\right) d x=\left[\frac{a x^{3}}{3}+\frac{b x^{2}}{2}\right]_{x=5}-\left[\frac{a x^{3}}{3}+\frac{b x^{2}}{2}\right]_{x=0} \\
& =\frac{125}{3} a+\frac{25}{2} b
\end{aligned}
$$

Thus, $a=\frac{3}{125}\left(1-\frac{25}{2} b\right)$

To satisfy condition (1), we need, $a x^{2}+b x \geq 0$ for $x \in[0,5]$
Thus, $\frac{3}{125}\left(1-\frac{25}{2} b\right) x^{2}+b x \geq 0$ for $x \in[0,5]$
We notice that the quadratic equation $\frac{3}{125}\left(1-\frac{25}{2} b\right) x^{2}+b x=0$ has two roots, $x_{1}=0$ and $x_{2}=\frac{-125 b}{3\left(1-\frac{25}{2} b\right)}$, except when $b=\frac{2}{25}$, then the only root is $x_{1}=0$.
First we consider the case where the coefficient of x^{2} is positive, i.e. $b<\frac{2}{25}$. In that case, $f_{X}(x)$ is always negative between the roots and positive outside the roots. Thus, condition (1) is satisfied only if $x_{2} \leq 0$, i.e. $b \geq 0$.

Next, we consider the case where the coeficient of x^{2} is negative, i.e. $b>\frac{2}{25}$. In this case $f_{X}(x)$ is always positive between the roots, and so we need $x_{2} \geq 5$ to satisfy condition (1).
$\frac{-125 b}{3\left(1-\frac{25}{2} b\right)} \geq 5 \Rightarrow b \leq \frac{6}{25}$.
Finally, if $b=\frac{2}{25}$, then $f_{X}(x)=\frac{2}{25} x \geq 0$ for $x \in[0,5]$, and condition (1) is satisfied.
Thus, for $f_{X}(x)$ to be a valid PDF, we need:

$$
\left\{\begin{array}{l}
0 \leq b \leq \frac{6}{25} \\
a=\frac{3}{125}\left(1-\frac{25}{2} b\right)
\end{array}\right.
$$

Question 4.3

A student is allowed to take a certain test three times and the student's final score will be the maximum of the test score. Thus

$$
\begin{equation*}
\mathbf{X}=\max \left\{\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, \mathbf{X}_{\mathbf{3}}\right\} \tag{1}
\end{equation*}
$$

where $\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, \mathbf{X}_{\mathbf{3}}$ are the three test scores and \mathbf{X} is the final score. Assume the score takes values $x, 0 \leq x \leq 100$, and the results of the tests form an independent set of random variables, each with distribution function $F_{X_{i}}=F(x)=P\left(\mathbf{X}_{\mathbf{i}} \leq x\right), \quad 1 \leq i \leq 3$. Let the distribution function of \mathbf{X} be written as

$$
\begin{equation*}
F_{\mathbf{X}}(x)=\{P(\mathbf{X} \leq x), \quad 0 \leq x \leq 160\} . \tag{2}
\end{equation*}
$$

(a) Find which of the following gives $F_{\mathbf{X}}(\cdot)$ and give the derivation:
(i) $F^{1 / 3}\left(x^{3}\right)$,
(ii) $F^{3}(x)$,
(iii) $F\left(x^{3}\right)$
(b) If $F(x)=\left\{0, x<0 ; \frac{x}{160}, 0 \leq x \leq 160 ; 1,160 \leq x\right\}$, and given that any score \mathbf{X}_{i} is uniformly distributed over $[0,160]$, find $F_{\mathbf{X}}(120)=\operatorname{Pr}\{\mathbf{X} \leq 120\}$.

Question 4.3 (Solution)

(a) We have that $\mathbf{X}=\max \left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right\}$. Noting that the event $\{x \leq \mathbf{X}\}$ is equivalent to the event $\left\{\mathbf{X}_{1} \leq x\right\} \cap\left\{\mathbf{X}_{2} \leq x\right\} \cap\left\{\mathbf{X}_{3} \leq x\right\}$ we have that

$$
\begin{aligned}
F_{\mathbf{x}}(x) & =\{P(\mathbf{X} \leq x), 0 \leq x \leq 160\} \\
& =P\left(\max \left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right\} \leq x\right) \\
& =P\left(\left\{\mathbf{X}_{1} \leq x\right\} \cap\left\{\mathbf{X}_{2} \leq x\right\} \cap\left\{\mathbf{X}_{3} \leq x\right\}\right) \\
& =\prod_{i=1}^{3} P\left(\mathbf{X}_{i} \leq x\right), \quad \text { since } \mathbf{X}_{i} \text { 's are independent } \\
& =F^{3}(x)
\end{aligned}
$$

(b) $F_{\mathbf{X}}(120)=P(\mathbf{X} \leq 120)=F^{3}(120)=\left(\frac{120}{160}\right)^{3}=\frac{27}{64}$

