Question 4.1 (SG p. 152)

Let X be a random point be selected from the interval (0,3) (i.e. by the EPP, or, equivalently, such that X has a linearly increasing distribution function). What is the probability that $X^2-5X+6 > 0$?

Question 4.1 (Solution) We have that

$$F_X(x) = \begin{cases} 0 & x < 0\\ \frac{x}{3} & 0 \le x < 3\\ 1 & x \ge 3 \end{cases}$$

and since

$$P(X^2 - 5X + 6 > 0) = 1 - P(2 \le X \le 3)$$

we can compute $P(X^2 - 5X + 6 > 0) = 1 - (F_X(3) - F_X(2)) = \frac{2}{3}$

Question 4.2

For constants a and b, a random variable X has PDF

$$f_X(x) = \begin{cases} ax^2 + bx & 0 \le x \le 5, \\ 0 & otherwise \end{cases}$$

What conditions on a and b are necessary and sufficient to guarantee that $f_X(x)$ is a valid PDF?

Question 4.2 (Solution)

For $f_X(x)$ to be a valid PDF, it needs to satisfy two conditions:

$$1.f_X(x) \ge 0$$
 for $x \in [0, 5]$.
 $2.\int_0^5 f_X(x)dx = 1.$

From condition (2) we get,

$$1 = \int_0^5 (ax^2 + bx)dx = \left[\frac{ax^3}{3} + \frac{bx^2}{2}\right]_{x=5} - \left[\frac{ax^3}{3} + \frac{bx^2}{2}\right]_{x=0}$$

= $\frac{125}{3}a + \frac{25}{2}b$
Thus, $a = \frac{3}{125}\left(1 - \frac{25}{2}b\right)$

To satisfy condition (1), we need, $ax^2 + bx \ge 0$ for $x \in [0, 5]$ Thus, $\frac{3}{125} \left(1 - \frac{25}{2}b\right)x^2 + bx \ge 0$ for $x \in [0, 5]$ We notice that the quadratic equation $\frac{3}{125} \left(1 - \frac{25}{2}b\right)x^2 + bx = 0$ has two roots, $x_1 = 0$ and $x_2 = \frac{-125b}{3\left(1 - \frac{25}{2}b\right)}$, except when $b = \frac{2}{25}$, then the only root is $x_1 = 0$.

First we consider the case where the coefficient of x^2 is positive, i.e. $b < \frac{2}{25}$. In that case, $f_X(x)$ is always negative between the roots and positive outside the roots. Thus, condition (1) is satisfied only if $x_2 \le 0$, i.e. $b \ge 0$.

Next, we consider the case where the coefficient of x^2 is negative, i.e. $b > \frac{2}{25}$. In this case $f_X(x)$ is always positive between the roots, and so we need $x_2 \ge 5$ to satisfy condition (1).

$$\frac{-125b}{3\left(1-\frac{25}{2}b\right)} \ge 5 \Rightarrow b \le \frac{6}{25}.$$

Finally, if $b = \frac{2}{25}$, then $f_X(x) = \frac{2}{25}x \ge 0$ for $x \in [0,5]$, and condition (1) is satisfied.
Thus, for $f_X(x)$ to be a valid PDF, we need:

$$\begin{cases} 0 \le b \le \frac{6}{25} \\ a = \frac{3}{125} \left(1 - \frac{25}{2} b \right) \end{cases}$$

Question 4.3

A student is allowed to take a certain test three times and the student's final score will be the maximum of the test score. Thus

$$\mathbf{X} = max\{\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3\},\tag{1}$$

where X_1, X_2, X_3 are the three test scores and X is the final score. Assume the score takes values $x, 0 \le x \le 100$, and the results of the tests form an independent set of random variables, each with distribution function $F_{X_i} = F(x) = P(X_i \le x), \ 1 \le i \le 3$. Let the distribution function of X be written as

$$F_{\mathbf{X}}(x) = \{ P(\mathbf{X} \le x), \quad 0 \le x \le 160 \}.$$
 (2)

(a) Find which of the following gives $F_{\mathbf{X}}(\cdot)$ and give the derivation:

(i) $F^{1/3}(x^3)$, (ii) $F^3(x)$, (iii) $F(x^3)$

(b) If $F(x) = \{0, x < 0; \frac{x}{160}, 0 \le x \le 160; 1, 160 \le x\}$, and given that any score \mathbf{X}_i is uniformly distributed over [0, 160], find $F_{\mathbf{X}}(120) = Pr\{\mathbf{X} \le 120\}$.

Question 4.3 (Solution)

(a) We have that $\mathbf{X} = max\{\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3\}$. Noting that the event $\{x \leq \mathbf{X}\}$ is equivalent to the event $\{\mathbf{X}_1 \leq x\} \cap \{\mathbf{X}_2 \leq x\} \cap \{\mathbf{X}_3 \leq x\}$ we have that

$$F_{\mathbf{x}}(x) = \{P(\mathbf{X} \le x), 0 \le x \le 160\}$$

= $P(\max{\{\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3\}} \le x)$
= $P(\{\mathbf{X}_1 \le x\} \cap \{\mathbf{X}_2 \le x\} \cap \{\mathbf{X}_3 \le x\})$
= $\prod_{i=1}^3 P(\mathbf{X}_i \le x)$, since \mathbf{X}_i 's are independent
= $F^3(x)$.

(b) $F_{\mathbf{X}}(120) = P(\mathbf{X} \le 120) = F^3(120) = \left(\frac{120}{160}\right)^3 = \frac{27}{64}$