### 3.1 Solution:

(i) (a)

$$
\begin{aligned}
P(N F \mid M A)= & P(N F \mid C G, M A) P(C G \mid M A)+P(N F \mid F K, M A) P(F K \mid M A) \\
= & P(N F \mid C G) P(C G \mid M A)+P(N F \mid F K) P(F K \mid M A) \\
= & \frac{1}{2} \cdot[P(C G \mid M A, S G) P(S G \mid M A)] \\
& +\frac{1}{2} \cdot[P(F K \mid M A, C A) P(C A \mid M A)+P(F K \mid S G, M A) P(S G \mid M A)] \\
= & \frac{1}{2} \cdot\left[\frac{1}{2} \cdot \frac{1}{3}\right]+\frac{1}{2} \cdot\left[1 \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{1}{3}\right] \quad \\
= & \frac{1}{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(C S \mid M A)= & P(C S \mid C G, M A) P(C G \mid M A)+P(C S \mid F K, M A) P(F K \mid M A) \\
= & P(C S \mid C G) P(C G \mid M A)+P(C S \mid F K) P(F K \mid M A) \\
= & \frac{1}{2} \cdot[P(C G \mid S G, M A) P(S G \mid M A)] \quad \quad \text { (by Markov Property) } \\
& +\frac{1}{2} \cdot[P(F K \mid C A, M A) P(C A \mid M A)+P(F K \mid S G, M A) P(S G \mid M A)] \\
= & \frac{1}{2} \cdot\left[\frac{1}{2} \cdot \frac{1}{3}\right]+\frac{1}{2} \cdot\left[1 \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{1}{3}\right] \quad \text { (by Markov Property) } \\
= & \frac{1}{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
P(C S \mid A) & =P(C S \mid M A, A) P(M A \mid A) \\
& =P(C S \mid M A) \cdot \frac{1}{2}=\frac{1}{4}
\end{aligned}
$$

(ii)(a)

$$
\begin{aligned}
P(M A \mid C S) & =\frac{P(M A \cap C S)}{P(C S)}=\frac{P(C S \mid M A) P(M A)}{P(C S)} \\
& =\frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{4}}=1
\end{aligned}
$$

(b)

$$
P(C A \mid S E C)=\frac{P(C A \cap S E C)}{P(S E C)}=\frac{P(S E C \mid C A) P(C A)}{P(S E C)}
$$

where

$$
\begin{aligned}
P(C A)= & P(C A \mid M A) P(M A \mid A) P(A)=\frac{1}{3} \\
P(S E C \mid C A)= & P(S E C \mid N F) P(N F \mid F K) P(F K \mid C A)+P(S E C \mid C S) P(C S \mid F K) P(F K \mid C A) \\
= & \frac{5}{6} \\
P(S G)= & P(S G \mid M A) P(M A \mid A) P(A)=\frac{1}{6} \\
P(S E C \mid S G)= & P(S E C \mid C S) P(C S \mid C G) P(C G \mid S G)+P(S E C \mid N F) P(N F \mid C G) P(C G \mid S G) \\
& +P(S E C \mid C S) P(C S \mid F K) P(F K \mid S G)+P(S E C \mid N F) P(N F \mid F K) P(F K \mid S G) \\
= & \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{2}+1 \cdot \frac{1}{2} \cdot \frac{1}{2}+\frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{2}+1 \cdot \frac{1}{2} \cdot \frac{1}{2} \\
= & \frac{5}{6}
\end{aligned}
$$

and

$$
P(S E C)=P(S E C \mid C A) P(C A)+P(S E C \mid S G) P(S G)=\frac{5}{12} .
$$

Hence, we have

$$
P(C A \mid S E C)=\frac{\frac{5}{6} \cdot \frac{1}{3}}{\frac{1}{2} \cdot \frac{5}{6}}=\frac{2}{3} .
$$

(iii) The transition matrix $\mathbf{T}$ is given as

$$
\mathbf{T}:=\left[\begin{array}{ccccccccccc}
0 & 0 & \frac{1}{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{2}{3} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2}{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

and hence the probability distribution on day 3 is given as

$$
\begin{aligned}
\mathbf{P}_{3} & =\mathbf{T}^{2} \cdot\left[\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & \frac{3}{4} & \frac{1}{4} & 0 & 0
\end{array}\right]^{T} \\
& =\left[\begin{array}{lllllllllll}
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]^{T}
\end{aligned}
$$

i.e, $P(C S)=P(N F)=\frac{1}{2}$.

### 3.2 Solution:

(i)

$$
P(n \mid \alpha)=P(n \delta \mid \alpha)+P(n \gamma \mid \alpha)=P(n \mid \delta) P(\delta \mid \alpha)+P(n \mid \gamma) P(\gamma \mid \alpha)=\frac{3}{16}+\frac{1}{4}=\frac{7}{16}
$$

(ii)

$$
P(n \mid \beta)=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}
$$

(iii)

$$
P(\alpha \mid n)=\frac{P(\alpha n)}{P(n)}=\frac{P(n \mid \alpha) P(\alpha)}{P(n \mid \alpha) P(\alpha)+P(n \mid \beta) P(\beta)}=\frac{\frac{7}{16}}{\frac{7}{16}+\frac{5}{8}}=\frac{7}{17}
$$

### 3.3 Solution

(a) $\mathrm{P}($ Stage 1: n steps; Stage 2: m steps $)=(1-p)^{n-1} p \cdot(1-q)^{m-1} q$.
(b) Define event E as the specified event in (b); then
$P(E)=\left(\sum_{n=1}^{\infty}(1-p)^{n-1} p\right) \cdot(1-q)^{m-1} q=(1-q)^{m-1} q$.
(c) Define event A as the specified event in (c); then
$P(A)=\left(\sum_{n=0}^{\infty}(1-p)^{2 n+1-1} p\right) \cdot 1=\frac{2}{3}$.

### 3.4 Solution

(a) The transition matrix $T$ is:

$$
T=\left[\begin{array}{ccc}
\alpha & \alpha^{\prime} & p \\
\beta & \beta^{\prime} & 1-p \\
1-\alpha-\beta & 1-\alpha^{\prime}-\beta^{\prime} & 0
\end{array}\right]
$$

(b) In the case specified in part (b),

$$
T=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]
$$

After 2 jumps the occupation probability for a process which starts in state $S_{1}$ with probability 1 is:

$$
T^{2} \cdot\left[\begin{array}{c}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{2}
\end{array}\right] .
$$

Hence, we have $P_{L}=\frac{1}{4}$.
(c)(i) For $\left(P_{L}, P_{R}, P_{1}\right)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ :

$$
T \cdot\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right]
$$

(ii) For $\left(P_{L}, P_{R}, P_{1}\right)=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)$ :

$$
T \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{8} \\
\frac{3}{8} \\
\frac{1}{4}
\end{array}\right]
$$

Hence, we have only case (ii): $\left(P_{L}, P_{R}, P_{1}\right)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ as a steady state probability for the markov chain.

