Question 1.1

Solution:

$$
\begin{aligned}
P\left(F_{2} \cap F_{3}\right) & =P\left(\left(F_{2} \cap F_{3} \cap F_{1}\right) \cup\left(F_{2} \cap F_{3} \cap F_{1}^{c}\right)\right) \\
& =0.003+0.019=0.022 \\
P\left(F_{1}^{c}\right) & =P\left(\left(F_{1}^{c} \cap\left(F_{2} \cap F_{3}\right)\right) \cup\left(F_{1}^{c} \cap\left(F_{2} \cap F_{3}\right)^{c}\right)\right) \\
& \left.=P\left(F_{1}^{c} \cap\left(F_{2} \cap F_{3}\right)\right)+P\left(F_{1}^{c} \cap\left(F_{2} \cap F_{3}\right)^{c}\right)\right) \\
& =0.019+0.009=0.028 \\
P\left(F_{1}\right) & =1-P\left(F_{1}^{c}\right)=1-0.028=0.972
\end{aligned}
$$

Since all information given about F_{2} or F_{3} appears in probabilities involving $\left(F_{2} \cap F_{3}\right),\left(F_{2} \cap\right.$ $\left.F_{3}\right)^{c}, F_{1}, F_{1}^{c}$, it is not possible to separately compute $P\left(F_{2}\right)$ or $P\left(F_{3}\right)$.

Question 1.2

Solution:

(i) $\alpha=\gamma$. Because $X \cap\left(\cup_{i=1}^{N} A_{i}\right)=\cup_{i=1}^{N}\left(X \cap A_{i}\right)$, and A_{i} are disjoint $\forall i$, we have $P\left(X \cap\left(\cup_{i=1}^{N} A_{i}\right)\right)=P\left(\cup_{i=1}^{N}\left(X \cap A_{i}\right)\right)=\sum_{i=1}^{N} P\left(X \bigcap A_{i}\right)$.

For α and β : For example, let $N=2, A_{1} \neq \emptyset, A_{2} \neq \emptyset, A_{1} \cap A_{2}=\emptyset$, and $P\left(A_{1} \cup A_{2}\right)=0.5$, then $\alpha=P\left(A_{2} \cap\left(A_{1} \cup A_{2}\right)\right)=P\left(A_{2}\right)>0$, and $\beta=P(X) P\left(A_{1} \cup A_{2}\right)=P\left(A_{2}\right) / 2>0$, hence, $\alpha \neq \beta$.
(ii) Since $\left\{A_{i}, 1 \leq i<\infty\right\}$ and $\left\{B_{i}, 1 \leq i<\infty\right\}$ are pairwise disjoint, the sets $\left\{A_{i} \cap B_{i}, 1 \leq i<\right.$ $\infty\}$ are pairwise disjoint. Hence, $P\left(\cup_{i=1}^{\infty}\left(A_{i} \cap B_{i}\right)\right)=\sum_{i=1}^{\infty} P\left(A_{i} \cap B_{i}\right)$.
(iii) If $A \cap B=\emptyset$, then $A_{i} \cap B_{i}=\emptyset$, and $\cup_{i=1}^{\infty}\left(A_{i} \cap B_{i}\right)=\emptyset$, i.e. $P\left(\cup_{i=1}^{\infty}\left(A_{i} \cap B_{i}\right)\right)=0$.

Question 1.3

Solution:

$S=\left\{H, T H, T^{2} H, \ldots, T^{N-1} H, \ldots\right\}$ (a) The events $H, T H, T^{2} H, \ldots, T^{N-1} H, \ldots \subset S$ are disjoint since $T^{j} H$ occurs only if $T^{i} H, i<j$, does not occur and then $T^{k} H, k>j$ cannot occur.
(b) BE (Branding Experiment) stops at the outcome of n-th toss if and only if $T^{n-1} H$ occurs, where $P\left(T^{n-1} H\right)=P(T)^{n-1} P(H)=\left(\frac{2}{3}\right)^{n-1} \frac{1}{3}$ (by independence) Hence BE stops at the outcome of the n-th toss, $n \leq N$, if $E^{N}=H \cup T H \cup \ldots \cup T^{N-1} H$ occurs, By axiom 3, E^{N} has probability $P\left(E^{N}\right)=\frac{1}{3}+\left(\frac{2}{3}\right) \frac{1}{3}+\ldots+\left(\frac{2}{3}\right)^{N-1} \frac{1}{3}=\frac{1-\left(\frac{2}{3}\right)^{N}}{1-\frac{2}{3}}=1-\left(\frac{2}{3}\right)^{N}$
(c) The events $\left\{H, T H, T^{2} H, \ldots, T^{N-1} H, \ldots\right\}$ are not pairwise independent since they are disjoint, or events $T^{i} H, T^{j} H, 0 \leq i<j<\infty$ are not independent since $0=P\left(T^{i} H \cap T^{j} H\right) \neq$ $P\left(T^{i} H\right) P\left(T^{j} H\right)=\left(\frac{2}{3}\right)^{i-1} \frac{1}{3}\left(\frac{2}{3}\right)^{j-1} \frac{1}{3}, 0 \leq i<j<\infty$.

Question 1.4

Solution:

(a) The sample space for this experiment where the outcome is taken to be pair $\left(T_{1}, T_{2}\right)$ is shown in Fig.1.
(b) The region A of the plane corresponding to the event "student is awake at 9 pm " is shown in Fig.2.
(c) The set B in the plane corresponding to the event "student is asleep more time than the student is awake" is shown in Fig.3.
(d) The region corresponding to the event $D=A^{c} \cap B$, which means "student is not awake at 9 pm and the student is asleep more time than being awake" is shown in Fig.4.

The probability of the event D is

$$
P_{D}=\frac{\frac{1}{2} \times 15^{2}-\frac{1}{2} \times 3^{2}+\frac{1}{2} \times 9^{2}}{\frac{1}{2} \times 24^{2}} \approx 0.516
$$

Question 1.5

Solution:

(a)

$$
P(\text { exactly } 4 \text { numbers correct })=\frac{C_{4}^{6} \times C_{6-4}^{49-6}}{C_{6}^{49}}=9.6862 \times 10^{-4}
$$

(b)
$P($ exactly 1 or 2 numbers correct $)=P($ exactly 1 number correct $)+P($ exactly 2 numbers correct $)$

$$
=\frac{C_{1}^{6} \times C_{6-1}^{49-6}}{C_{6}^{49}}+\frac{C_{2}^{6} \times C_{6-2}^{49-6}}{C_{6}^{49}} \approx 0.545
$$

(c) Define the events A, B as exactly one number correct on one of two independent tickets, say Ticket A and Ticket B.

$$
\begin{aligned}
& P(\text { one number correct on at least one of two independent tickets) } \\
= & P(A \cup B) \\
= & P(A)+P(B)-P(A \cap B) \\
= & P(A)+P(B)-P(A) P(B) \\
= & 2 \times \frac{C_{1}^{6} \times C_{6-1}^{49-6}}{C_{6}^{49}}-\left(\frac{C_{1}^{6} \times C_{6-1}^{49-6}}{C_{6}^{49}}\right)^{2} \\
\approx & 0.655
\end{aligned}
$$

or use

$$
\begin{aligned}
& P(\text { one number correct on at least one of two independent tickets) } \\
= & 1-P\left(A^{c} \cap B^{c}\right) \\
= & 1-P\left(A^{c}\right) P\left(B^{c}\right) \\
= & 1-(1-P(A))(1-P(B)) \\
= & P(A)+P(B)-P(A) P(B) \\
= & 2 \times \frac{C_{1}^{6} \times C_{6-1}^{49-6}}{C_{6}^{49}}-\left(\frac{C_{1}^{6} \times C_{6-1}^{49-6}}{C_{6}^{49}}\right)^{2} \\
\approx & 0.655
\end{aligned}
$$

Question 1.6

Solution:

Define the events $W_{I}, W_{I I}$, and $W_{I I I}$ as the candidate winning districts I, II and III separately; we seek the probability $P\left(W_{I} \cap W_{I I} \cap W_{I I I}\right)$. It is known that $P\left(W_{I} \cap W_{I I I}\right)=0.55, P\left(W_{I I}^{c} \cap W_{I}\right)=$ 0.34 , and $P\left(W_{I I}^{c} \cap W_{I I I}^{c} \cap W_{I}\right)=0.15$.

Hence

$$
\begin{aligned}
P\left(W_{I} \cap W_{I I} \cap W_{I I I}\right) & =P\left(W_{I} \cap W_{I I I}\right)-P\left(W_{I} \cap W_{I I}^{c} \cap W_{I I I}\right) \\
& =P\left(W_{I} \cap W_{I I I}\right)-\left[P\left(W_{I} \cap W_{I I}^{c}\right)-P\left(W_{I} \cap W_{I I}^{c} \cap W_{I I I}^{c}\right)\right] \\
& =0.55-0.34+0.15 \\
& =0.36 .
\end{aligned}
$$

Figure 1: Question 1.4 (a): sample space S

Figure 2: Question 1.4 (b): region corresponding to the event "A student is awake at 9 pm ".

Figure 3: Question 1.4 (c): region corresponding to the event B "student is asleep more time than the student is awake".

Figure 4: Question 1.4 (d): region corresponding to the event D

