Question 3.1

(i) Given $P(A)=1$, we have
a)

$$
\begin{gathered}
P(C S \mid M A)=P(C S \mid C G) P(C G \mid S G) P(S G \mid M A)+P(C S \mid F K) P(F K \mid S G) P(S G \mid M A) \\
+P(C S \mid F K) P(F K \mid C A) P(C A \mid M A)=\left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{3}\right) \\
+\left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{3}\right)+\left(\frac{1}{2} \times 1 \times \frac{2}{3}\right)=\frac{1}{2}
\end{gathered}
$$

b) By using part a) we have

$$
P(C S \mid A)=P(C S \mid M A) P(M A \mid A)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}
$$

ii)
a) By using part i) we have

$$
P(M A \mid C S)=\frac{P(M A \cap C S)}{P(C S)}=\frac{P(C S \mid M A) P(M A)}{P(C S)}=\frac{\frac{1}{2} \times \frac{1}{2}}{\frac{1}{4}}=1
$$

b) By using the hurricane Markov model we have

$$
\begin{gathered}
P(C A)=P(C A \mid M A) P(M A \mid A) P(A)=\frac{1}{3} \\
P(S E C \mid C A)=P(S E C \mid N F) P(N F \mid F K) P(F K \mid C A)+P(S E C \mid C S) P(C S \mid F K) P(F K \mid C A)=\frac{5}{6}, \\
P(S E C)=\frac{5}{12} .
\end{gathered}
$$

Therefore

$$
P(C A \mid S E C)=\frac{P(S E C \mid C A) P(C A)}{P(S E C)}=\frac{2}{3}
$$

iii)

$*$	$N C$	$S E C$	$C S$	$N F$	$C G$	$F K$	$S G$	$C A$	$M A$	$N A$	A
$N C$	0	0	$1 / 3$	0	0	0	0	0	0	0	0
$S E C$	0	0	$2 / 3$	1	0	0	0	0	0	0	0
$C S$	0	0	0	0	$1 / 2$	$1 / 2$	0	0	0	0	0
$N F$	0	0	0	0	$1 / 2$	$1 / 2$	0	0	0	0	0
$C G$	0	0	0	0	0	0	$1 / 2$	0	0	0	0
$F K$	0	0	0	0	0	0	$1 / 2$	1	0	0	0
$S G$	0	0	0	0	0	0	0	0	$1 / 3$	0	0
$C A$	0	0	0	0	0	0	0	0	$2 / 3$	0	0
$M A$	0	0	0	0	0	0	0	0	0	0	$1 / 2$
$N A$	0	0	0	0	0	0	0	0	0	0	$1 / 2$
A	1	1	0	0	0	0	0	0	0	1	0

By using the transition matrix, the hurricane probability distribution on Day 3 is

$$
\left[\begin{array}{llll}
0 & 0 & 1 / 2 & 1 / 2
\end{array} 000000000\right]^{T} \text {. }
$$

Question 3.2

There is only one box with one gold and one silver, so $P(A)=1 / 3$.
Also by using Bayes's Theorem we have:

$$
P(A)=\frac{P(S \mid G)}{P(G)}=\frac{P(\text { first gold and second silver })}{P(\text { first gold })}=\frac{1 / 3 \times 1 / 2}{1 / 3+(1 / 3 \times 1 / 2)}=\frac{1}{3} .
$$

Question 3.3

P (success n by steps in stage 1 and m steps in stage 2)

$$
=(1-p)^{n-1} \times p \times(1-q)^{m-1} \times q .
$$

(b)

$$
=\sum_{n=1}^{\infty}(1-p)^{n-1} \times p \times(1-q)^{m-1} \times q
$$

(c)
P (makes in odd step in stage 1 and any instant in stage 2)

$$
=\left(\sum_{n=0}^{\infty}(1-p)^{2 n} \times p\right) \times 1=\frac{p}{1-(1-p)^{2}}=\frac{1}{2-p}=\frac{3}{5} .
$$

Question 3.4

a)

$$
\begin{gathered}
P\left(X_{2} \mid X_{1}\right)=1, \\
P\left(X_{1} \mid X_{2}\right)=1 / 3, \\
P\left(X_{3} \mid X_{2}\right)=2 / 3, \\
P\left(X_{2} \mid X_{3}\right)=2 / 3, \\
P\left(X_{4} \mid X_{3}\right)=1 / 3, \\
P\left(X_{3} \mid X_{4}\right)=1 .
\end{gathered}
$$

Therefore,

$$
T=\left(\begin{array}{cccc}
0 & 1 / 3 & 0 & 0 \\
1 & 0 & 2 / 3 & 0 \\
0 & 2 / 3 & 0 & 1 \\
0 & 0 & 1 / 3 & 0
\end{array}\right)
$$

2)

$$
P_{3}=T^{3}\left[\begin{array}{c}
1 / 2 \\
0 \\
0 \\
1 / 2
\end{array}\right]=\left[\begin{array}{c}
1 / 9 \\
7 / 18 \\
7 / 18 \\
1 / 9
\end{array}\right]
$$

3)

$$
[T-I] \times\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]=0 \quad X_{1}+X_{2}+X_{3}+X_{4}=1
$$

Therefore,

$$
\text { steady state }=\left[\begin{array}{llll}
1 / 8 & 3 / 8 & 3 / 8 & 1 / 8
\end{array}\right] .
$$

