Question 1.1

Solution:

$$
\begin{aligned}
P\left(F_{2} \cap F_{3}\right) & =P\left(\left(F_{2} \cap F_{3} \cap F_{1}\right) \cup\left(F_{2} \cap F_{3} \cap F_{1}^{c}\right)\right) \\
& =0.004+0.023=0.027 \\
P\left(F_{1}^{c}\right) & =P\left(\left(F_{1}^{c} \cap\left(F_{2} \cap F_{3}\right)\right) \cup\left(F_{1}^{c} \cap\left(F_{2} \cap F_{3}\right)^{c}\right)\right) \\
& \left.=P\left(F_{1}^{c} \cap\left(F_{2} \cap F_{3}\right)\right)+P\left(F_{1}^{c} \cap\left(F_{2} \cap F_{3}\right)^{c}\right)\right) \\
& =0.023+0.011=0.034 \\
P\left(F_{1}\right) & =1-P\left(F_{1}^{c}\right)=1-0.034=0.966
\end{aligned}
$$

Since all information given about F_{2} or F_{3} appears in probabilities involving $\left(F_{2} \cap F_{3}\right),\left(F_{2} \cap\right.$ $\left.F_{3}\right)^{c}, F_{1}, F_{1}^{c}$, it is not possible to separately compute $P\left(F_{2}\right)$ or $P\left(F_{3}\right)$.

Question 1.2

Solution:

$S=\left\{H, T H, T^{2} H, \ldots, T^{N-1} H, \ldots\right\}$
(a)
i) The events $H, T H, T^{2} H, \ldots, T^{N-1} H, \ldots \subset S$ are disjoint since $T^{j} H$ occurs only if $T^{i} H, i<j$, does not occur and then $T^{k} H, k>j$ cannot occur.
ii) No. Since the first union is sample space S and the second set $E(S)$ is the set of all subsets of S.
(b) BE (Branding Experiment) stops at the outcome of n-th toss if and only if $T^{n-1} H$ occurs, where $P\left(T^{n-1} H\right)=P(T)^{n-1} P(H)=\left(\frac{3}{4}\right)^{n-1} \frac{1}{4}$ (by independence) Hence BE stops at the outcome of the n-th toss, $n \leq N$, if $E^{N}=H \cup T H \cup \ldots \cup T^{N-1} H$ occurs, By axiom 3, E^{N} has probability $P\left(E^{N}\right)=\frac{1}{4}+\left(\frac{3}{4}\right) \frac{1}{4}+\ldots+\left(\frac{3}{4}\right)^{N-1} \frac{1}{4}=\frac{1}{4} \times \frac{1-\left(\frac{3}{4}\right)^{N}}{1-\frac{3}{4}}=1-\left(\frac{3}{4}\right)^{N}$
(c) The events $\left\{H, T H, T^{2} H, \ldots, T^{N-1} H, \ldots\right\}$ are not pairwise independent since they are disjoint,
or events $T^{i} H, T^{j} H, 0 \leq i<j<\infty$ are not independent since $0=P\left(T^{i} H \cap T^{j} H\right) \neq$ $P\left(T^{i} H\right) P\left(T^{j} H\right)=\left(\frac{3}{4}\right)^{i-1} \frac{1}{4}\left(\frac{3}{4}\right)^{j-1} \frac{1}{4}, 0 \leq i<j<\infty$.
(d)
i) The probability that the experiment BE stops after an odd number of tosses is:

$$
\sum_{k=0}^{N} \frac{1}{4}\left(\frac{3}{4}\right)^{2 k}=\frac{1}{4} \times \frac{1}{1-\left(\frac{3}{4}\right)^{2}}=\frac{4}{7}
$$

ii) Let $A=\{$ The experiment BE stops after an even number of tosees $\}$
and $B=\{$ The experiment BE stops after an odd number of tosees $\}$ then we have

$$
P(S)=P(A)+P(B)=1
$$

Therefore, $P(A)=1-P(B)=1-\frac{4}{7}=\frac{3}{7}$.

Question 1.3

Solution:
(a) The sample space for this experiment where the outcome is taken to be pair $\left(T_{1}, T_{2}\right)$ is shown in Fig. 1.
(b) The region A of the plane corresponding to the event "student is awake at 9 pm " is shown in Fig. 2.
(c) The set B in the plane corresponding to the event "student is asleep more time than the student is awake" is shown in Fig. 3.
(d) The region corresponding to the event $D=A^{c} \cap B$, which means "student is not awake at 9 pm and the student is asleep more time than being awake" is shown in Fig. 4.

The probability of the event D is

$$
P_{D}=\frac{\frac{1}{2} \times 15^{2}-\frac{1}{2} \times 3^{2}+\frac{1}{2} \times 9^{2}}{\frac{1}{2} \times 24^{2}} \approx 0.516
$$

Figure 1: Question 1.3 (a): sample space S.

Figure 2: Question 1.3 (b): region corresponding to the event A.

Figure 3: Question 1.3 (c): region corresponding to the event B.

Figure 4: Question 1.3 (d): region corresponding to the event $D=A^{c} \cap B$.

Question 1.4

Solution:

i) $P\left(A^{c}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Ind}_{k}\left(A^{c}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left[1-\operatorname{Ind}_{k}(A)\right]=$ $1-\left[\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Ind}_{k}(A)\right]=1-P(A)$.
ii) $\operatorname{Ind}_{k}(A)=0$ or 1 , and $\operatorname{Ind}_{k}(B)=0$ or 1 , so

$$
\begin{aligned}
& 0 \leq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Ind}_{k}(A) \leq 1, \\
& 0 \leq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Ind}_{k}(B) \leq 1 .
\end{aligned}
$$

Since

$$
\begin{gathered}
\operatorname{Ind}_{k}(A)=1 \Rightarrow \operatorname{Ind}_{k}(B)=1 \\
\operatorname{Ind}_{k}(B)=1 \Rightarrow \operatorname{Ind}_{k}(B)=0 \text { or } 1
\end{gathered}
$$

then

$$
\frac{1}{n} \sum_{k=1}^{n} \operatorname{Ind}_{k}(A) \leq \frac{1}{n} \sum_{k=1}^{n} \operatorname{Ind}_{k}(B)
$$

and so

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Ind}_{k}(A) \leq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Ind}_{k}(B)
$$

therefore $0 \leq P(A) \leq P(B) \leq 1$.
iii) Let $(A B)_{k}$, etc., denote $(A \cap B)_{k}$, etc., then

$$
\begin{gathered}
\operatorname{Ind}_{k}(A \cup B)\left\{\begin{array}{cc}
1 & \text { on }(A B)_{k}, \\
1 & \left(A B^{c}\right)_{k}, \\
1 & \left(A^{c} B\right)_{k}, \\
0 & \left(A^{c} B^{c}\right)_{k} .
\end{array}\right\}=\operatorname{Ind}_{k}(A)\left\{\begin{array}{cc}
1 & \text { on }(A B)_{k}, \\
1 & \left(A B^{c}\right)_{k}, \\
0 & \left(A^{c} B\right)_{k}, \\
0 & \left(A^{c} B^{c}\right)_{k} .
\end{array}\right\}+\operatorname{Ind}_{k}(B)\left\{\begin{array}{cc}
1 & \text { on }(A B)_{k}, \\
0 & \left(A B^{c}\right)_{k}, \\
1 & \left(A^{c} B\right)_{k}, \\
0 & \left(A^{c} B^{c}\right)_{k}
\end{array}\right\} \\
-\operatorname{Ind}_{k}(A \cap B)\left\{\begin{array}{cc}
1 & \text { on }(A B)_{k} \\
0 & \left(A B^{c}\right)_{k} \\
0 & \left(A^{c} B\right)_{k} \\
0 & \left(A^{c} B^{c}\right)_{k}
\end{array}\right\}
\end{gathered}
$$

So

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Ind}_{k}(A \cup B)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Ind}_{k}(A)+\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Ind}_{k}(B)-\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Ind}_{k}(A \cap B)
$$

therefore

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

We note that in the calculation above, $\operatorname{Ind}_{k}(A \cap B)=\operatorname{Ind}_{k}(A) \cdot \operatorname{Ind}_{k}(B)$.

Question 1.5

Solution:
Define the events $W_{I}, W_{I I}$, and $W_{I I I}$ as the candidate winning districts I, II and III separately; we seek the probability $P\left(W_{I} \cap W_{I I} \cap W_{I I I}\right)$. It is known that $P\left(W_{I} \cap W_{I I I}\right)=0.55, P\left(W_{I I}^{c} \cap W_{I}\right)=$ 0.35 , and $P\left(W_{I I}^{c} \cap W_{I I I}^{c} \cap W_{I}\right)=0.15$.

Hence

$$
\begin{aligned}
P\left(W_{I} \cap W_{I I} \cap W_{I I I}\right) & =P\left(W_{I} \cap W_{I I I}\right)-P\left(W_{I} \cap W_{I I}^{c} \cap W_{I I I}\right) \\
& =P\left(W_{I} \cap W_{I I I}\right)-\left[P\left(W_{I} \cap W_{I I}^{c}\right)-P\left(W_{I} \cap W_{I I}^{c} \cap W_{I I I}^{c}\right)\right] \\
& =0.55-0.35+0.15 \\
& =0.35 .
\end{aligned}
$$

