ECSE 304-305B Assignment 7 FALL 2008

7.1 Solution:

(i) Since X; are independent random variables and uniformly distributed on the interval

[—k, k], the characteristic functions are given by

1
i (w) = Lk e]mﬂd:p - 2kjw
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which are even functions since Py, (w) = Px, (—w).
Given Y, = 37_, Xy,
By (w) = Elexp/™) = B(exp @i+ Xet-+X0)
= E(exp’ ) E(exp’®X2) ... E(exp’*")

= Oy, (w)Px,(w) - Py, (w).

Dy, (w) = Blexp ) = Bexp Xt 1)

= E(exp /") E(exp’X2) . .. E(exp(’l)nj“’X”)

= Ox, (-w)Px,(w) - Px, ((=1)"w)
Since each ®; is an even function of w, we have

Oz, (w) = Px, (w)Px,(w) - - x, (w),

that is to say @z (w) = Py, (w).
And because distribution functions are in one to one relation with characteristic functions,
we conclude that Y,, and Z,, have identical distributions.
(ii) As €® = lim, oo (1 4+ 2)" we have
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Do (w) = et 2

(iii) It is a Gaussian distribution function whereas

foolt) = — e T



7.2 Solution:
(i)

Q7 (w) = /OO eIVt f,(t) dt = /OO N e Mt = ———
0

(ii) Similar to part (i), we have
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Since Ty and T}, are independent random variables, the characteristic function of the total

waiting time T3 + T, is

Prie () = () - B, (w) = ij)/& myy

(iii)
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(iv)
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Hence their density functions could not be the same, since

fulz) = (1/27) /o; B, (w) - exp (—jwz) dw.
(v)
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7.3 Solution:

(i) By CLT,
1 &X
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Therefore,
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(ii) When a=1:

(a) 20(*2) — 1> 0.95 = O(*2) > 0.975 = 2 > 1.96 = n > 15.37
Since n is an integer, it has to be equal to or bigger than 16.

(b) 20(*4%) — 1> 0.9786 = ®(*2) > 0.9893 = L' > 2.3 = n > 21.16
Since n is an integer, it has to be equal to or bigger than 22.

7.4 Solution:

(a)

dy(w) = /_ fZ(z)ej‘”Z:/o 5pele 1)
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(¢) From the Fourier transform we can get ®_z(w) = ®z(—w)

As Z; and Z, are independent @y (w) = Oy, (w) - Py, (w) = ﬁzg

(d)From the one-to-one relationship, and the characteristic function got above, the probabil-

ity density of W is fy (w) = 3e= "



