ECSE 304-305 Assignment $7 \quad$ Fall 2008

Return by 12.00 pm, 6th November, 2008

7.1

(i) Consider a sequence of independent random variables $\left\{X_{k} ; 1 \leq k\right\}$ such that X_{k} is uniformly distributed on the interval $[-k, k]$. Define:

$$
Y_{n}=\sum_{k=1}^{n} X_{k}, \quad Z_{n}=\sum_{k=1}^{n}(-1)^{k} X_{k}
$$

By use of characteristic functions show whether or not Y_{n} and Z_{n} have identical distributions for all $\{n ; 1 \leq n\}$.
(ii) Give the characteristic function $\Phi_{\infty}(\omega), \omega \in R$, which is the limit of the sequence of characteristic functions

$$
\Phi_{n}(\omega)=\left(1+\frac{1}{n}\left[\mu j \omega-\frac{\omega^{2} \sigma^{2}}{2}\right]\right)^{n}, \quad \omega \in R, \quad n \longrightarrow \infty
$$

(iii) Find the probability density $f_{\infty}(\cdot)$ corresponding to $\Phi_{\infty}(\omega), \omega \in R$.

7.2

(i) Give the characteristic function of the exponential waiting time distribution on $[0, \infty)$ with parameter $\lambda>0$.

A traveller at Trudeau International Airport must wait in two queues in series: first, the traveller must wait at the Check-in queue for his or her airline; this has an exponentially distributed waiting time T_{λ}, with parameter $\lambda>0$; second, the traveller must wait in a queue in the Security Zone with an exponentially distributed waiting time T_{μ}, with parameter $\mu>0$.

It is assumed that T_{λ} and T_{μ} are independent random variables.
(ii) What is the characteristic function of the total waiting time $T_{\lambda}+T_{\mu}$?
(iii) Find the characteristic function of $2 T_{\lambda}$.
(iv) By use of characteristic functions, or otherwise, show whether the density of $T_{\lambda}+T_{\mu}$ with $\mu=\lambda$ is the same as that of $2 T_{\lambda}$.
(v) Find the second moment of $T_{\lambda}+T_{\mu}$.

7.3

Assume each of the independent identically distributed scalar random variables $X_{i}, 1 \leq i<\infty$, has mean 0 and variance $\sigma^{2}=4$. For $\alpha>0$, consider the probability of the event :

$$
A=\left\{-\alpha \leq \frac{1}{n} \sum_{i=1}^{n} X_{i} \leq \alpha\right\}
$$

(i) Use the Central Limit Theorem, together with the notation $\Phi(x), x \in R$, for the distribution function of a normally distributed $N(0,1)$ random variable, to give a formula for an approximation to the probability that the average $Z_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ lies in the interval $[-\alpha, \alpha]$. (ii) Let $\alpha=1$. Use the CLT based formula to find the smallest value of n for which the probability of A is at least: (a) 0.95 and (b) 0.9786 . (You may use the fact that for the Gaussian distribution $\Phi(-x)=1-\Phi(x), x \in R$, and may use any standard Gaussian distribution table; for instance in the course text this is given on page SG 632.)

7.4

(a) The exponential random variable Z has the density $f_{Z}(\cdot)=\left\{5 \mu e^{-5 \mu z}, z \in R_{+}, \mu>0\right\}$. Find the characteristic function $\Phi_{Z}(\omega), \omega \in R$.
(b) The random variable X has a Laplacian density $\frac{\lambda}{2} e^{-\lambda|x|}, x \in R, \lambda>0$. Find the characteristic function $\Phi_{X}(\omega), \omega \in R$, of X.
(c) Let the random variable W be defined by $W=Z_{1}-Z_{2}$, where Z_{1} and Z_{2} are independent identically distributed exponential random variables with parameter λ. Find $\Phi_{W}(\omega), \omega \in R$.
(d) Using the one-to-one relation of characteristic functions and densities and part (c), find the density of W.

