ECSE 304-305B Assignment 6 Solutions Fall 2008

Question 6.1

A scalar random variable X is sent through a multiplicative coding channel which generates the output $Z=X Y$: The independent positive scalar random variables X and Y have the densities $\left\{f_{X}(x)=x^{-2}, 1 \leq x<\infty\right\}$ and $\left\{f_{Y}(y)=2 y^{-3}, 1 \leq y<\infty\right\}$ respectively.
(a) Find the densities of the random variables: $X^{\prime}=\log X, 1 \leq X<\infty$, and $Y^{\prime}=\log Y$,

$$
1 \leq Y<\infty ; \text { on } R_{+}=[0,1)
$$

(b) Find the characteristic functions of the densities of X^{\prime}, Y^{\prime} and $Z^{\prime}=\log Z$.
(c) Give the probability density of the coded version Z of the signal X.

Q 6.1 Solution:

(a) Given $X^{\prime}=\log X$ and $Y^{\prime}=\log Y$, find $f_{X^{\prime}}\left(x^{\prime}\right)$ and $f_{Y^{\prime}}\left(y^{\prime}\right)$ respectively.

By definition, the densities for X^{\prime} and Y^{\prime} are defined as follows:

$$
\begin{aligned}
f_{X^{\prime}}\left(x^{\prime}\right) & =f_{X}\left(x\left(x^{\prime}\right)\right)\left|\frac{\partial x\left(x^{\prime}\right)}{\partial x^{\prime}}\right| \\
f_{Y^{\prime}}\left(y^{\prime}\right) & =f_{Y}\left(y\left(y^{\prime}\right)\right)\left|\frac{\partial y\left(y^{\prime}\right)}{\partial y^{\prime}}\right|
\end{aligned}
$$

It follows that

$$
\begin{aligned}
x^{\prime}(x) & =\log x \Rightarrow x\left(x^{\prime}\right)=e^{x^{\prime}} \Rightarrow \frac{\partial x\left(x^{\prime}\right)}{\partial x^{\prime}}=e^{x^{\prime}} \\
y^{\prime}(y) & =\log y \Rightarrow y\left(y^{\prime}\right)=e^{y^{\prime}} \Rightarrow \frac{\partial y\left(y^{\prime}\right)}{\partial y^{\prime}}=e^{y^{\prime}}
\end{aligned}
$$

and

$$
\begin{gathered}
f_{X}\left(x\left(x^{\prime}\right)\right)=\left(e^{x^{\prime}}\right)^{-2}=e^{-2 x^{\prime}}, \quad 0 \leq x^{\prime}<\infty \\
f_{Y}\left(y\left(y^{\prime}\right)\right)=2\left(e^{y^{\prime}}\right)^{-3}=2 e^{-3 y^{\prime}}, \quad 0 \leq y^{\prime}<\infty
\end{gathered}
$$

Then the final densities will be as follows:

$$
\begin{gathered}
f_{X^{\prime}}\left(x^{\prime}\right)=e^{-2 x^{\prime}} e^{x^{\prime}}=e^{-x^{\prime}}, \quad 0 \leq x^{\prime}<\infty \\
f_{Y^{\prime}}\left(y^{\prime}\right)=2 e^{-3 y^{\prime}} e^{y^{\prime}}=2 e^{-2 y^{\prime}}, \quad 0 \leq y^{\prime}<\infty
\end{gathered}
$$

(b) Find the characteristic functions of the densities of X^{\prime}, Y^{\prime} and $Z^{\prime}=\log Z$.

Following the definition of the characteristic function

$$
\begin{aligned}
& \Phi_{X^{\prime}}(\omega)=\int_{-\infty}^{\infty} e^{j \omega x^{\prime}} f_{X^{\prime}}\left(x^{\prime}\right) d x^{\prime} \\
& \Phi_{Y^{\prime}}(\omega)=\int_{-\infty}^{\infty} e^{j \omega y^{\prime}} f_{Y^{\prime}}\left(y^{\prime}\right) d y^{\prime}
\end{aligned}
$$

Since x^{\prime} and y^{\prime} are defined in certain ranges, and substituting for $f_{X^{\prime}}\left(x^{\prime}\right)$ and $f_{Y^{\prime}}\left(y^{\prime}\right)$ respectively, the characteristic functions become as follows:

$$
\begin{aligned}
& \Phi_{X^{\prime}}(\omega)=\int_{0}^{\infty} e^{j \omega x^{\prime}} e^{-x^{\prime}} d x^{\prime}=\frac{1}{(1-j \omega)} \\
& \Phi_{Y^{\prime}}(\omega)=\int_{0}^{\infty} e^{j \omega y^{\prime}} 2 e^{-2 y^{\prime}} d y^{\prime}=\frac{2}{(2-j \omega)}
\end{aligned}
$$

For $Z^{\prime}=\log Z$, its expression can be simplified as follows:

$$
\begin{aligned}
Z^{\prime} & =\log Z \\
& =\log X Y=\log X+\log Y=X^{\prime}+Y^{\prime}
\end{aligned}
$$

which is simply the summation of two independent random variables. The characteristic function for Z^{\prime}, by definition, will be as follows:

$$
\begin{aligned}
\Phi_{Z^{\prime}}(\omega) & =\Phi_{\left(X^{\prime}+Y^{\prime}\right)}(\omega) \\
& =\Phi_{X^{\prime}}(\omega) \Phi_{Y^{\prime}}(\omega) \\
& =\frac{1}{(1-j \omega)} \frac{2}{(2-j \omega)} \\
& =\frac{2}{(1-j \omega)(2-j \omega)}, \quad \omega \in R
\end{aligned}
$$

(c) Give the probability density of the coded version Z of the signal X.

Using the property of characteristic functions that they have unique inverses, we can restore the density $f_{Z^{\prime}}\left(z^{\prime}\right)$ from $\Phi_{Z^{\prime}}(\omega)$ then use the transformation $Z=e^{Z^{\prime}}$ to restore the original density $f_{Z}(z)$. First, let us expand the above solution for $\Phi_{Z^{\prime}}(\omega)$ and using partial fraction to see it clearly.

$$
\begin{aligned}
\Phi_{Z^{\prime}}(\omega) & =\frac{2}{(1-j \omega)(2-j \omega)} \\
& =\frac{a}{(1-j \omega)}+\frac{b}{(2-j \omega)} \\
& =\frac{2}{(1-j \omega)}+\frac{-2}{(2-j \omega)} \\
\Phi_{\left(X^{\prime}+Y^{\prime}\right)}(\omega) & =2 \Phi_{X^{\prime}}(\omega)-\Phi_{Y^{\prime}}(\omega)
\end{aligned}
$$

By the inverse Fourier transform, we know that $\Phi_{\left(X^{\prime}+Y^{\prime}\right)}(\omega)$ must be the characteristic function of the density $f_{X^{\prime}+Y^{\prime}}\left(x^{\prime}+y^{\prime}\right)$ which is actually the density $f_{Z^{\prime}}\left(z^{\prime}\right)$. Therefore,

$$
f_{Z^{\prime}}\left(z^{\prime}\right)=2 e^{-z^{\prime}}-2 e^{-2 z^{\prime}}, \quad z^{\prime} \geq 0
$$

Using the transformation rule

$$
\begin{array}{r}
f_{Z}(z)=f_{Z^{\prime}}\left(z^{\prime}(z)\right)\left|\frac{\partial z^{\prime}(z)}{\partial z}\right|, \\
z^{\prime}(z)=\log z \Rightarrow \quad \Rightarrow \quad \frac{\partial z^{\prime}(z)}{\partial z}=1 / z \\
f_{Z^{\prime}}\left(z^{\prime}(z)\right)=2 e^{-\log z}-2 e^{-2 \log z}
\end{array}
$$

This makes the final density

$$
f_{Z}(z)=\left(\frac{2}{z}-\frac{2}{z^{2}}\right) \frac{1}{z}, \quad z \geq 1
$$

You can verify the answers by integrating $f_{Z}(z)$ from 1 to ∞ and $f_{Z^{\prime}}\left(z^{\prime}\right)$ from 0 to ∞.

Question 6.2

Find (a) the mean value μ, and (b) the variance σ^{2} of an RV X with the Laplace density

$$
f_{X}(x)=\frac{1}{2 b} e^{-2|x-m| / 2 b},
$$

where b and m are real constants, $b>0$ and $-\infty<m<\infty$.

Find the corresponding characteristic function $\Phi_{X}(\omega)$ and verify the values found above for μ, σ^{2} by use of the Moment Theorem.

Q 6.2 Solution:

We can find the mean and variance of X from a table or by integrating

$$
\begin{aligned}
E X & =\int_{-\infty}^{\infty}(x-m+m) f_{X}(x) d x \\
& =\int_{-\infty}^{\infty}(x-m) \frac{1}{2 b} e^{-2|x-m| / 2 b} d x+\int_{-\infty}^{\infty} m f_{X}(x) d x \\
& =\int_{-\infty}^{\infty} y \frac{1}{2 b} e^{-2|y| / 2 b} d y+m \\
& =0+m \quad \text { (by symmetry of the integrand). }
\end{aligned}
$$

Integration by parts can be used to obtain $E X^{2}$. In the end, we find:

$$
\begin{gathered}
\mu=m \\
\sigma^{2}=2 b^{2}
\end{gathered}
$$

The characteristic function is given by:

$$
\Phi_{X}(\omega)=\int_{-\infty}^{\infty} e^{j \omega x} f_{X}(x) d x=\int_{-\infty}^{\infty} e^{j \omega x} \frac{1}{2 b} e^{-2|x-m| / 2 b} d x
$$

Using the hint, we set the parameter $\mathrm{m}=0$, making X a zero-mean R.V. The characteristic
function in this case is given by:

$$
\begin{aligned}
\Phi_{X}(\omega) & =\int_{-\infty}^{\infty} e^{j \omega x} \frac{1}{2 b} e^{-2|x| / 2 b} d x \\
& =\frac{1}{2 b} \int_{-\infty}^{0} e^{x\left(\frac{1}{b}+j \omega\right)} d x+\frac{1}{2 b} \int_{0}^{\infty} e^{x\left(-\frac{1}{b}+j \omega\right)} d x \\
& =\frac{1}{2 b}\left(\left.\frac{1}{\frac{1}{b}+j \omega} e^{x\left(\frac{1}{b}+j \omega\right)}\right|_{-\infty} ^{0}-\left.\frac{1}{-\frac{1}{b}+j \omega} e^{x\left(-\frac{1}{b}+j \omega\right)}\right|_{0} ^{\infty}\right) \\
& =\frac{1}{2 b}\left(\frac{1}{\frac{1}{b}+j \omega}+\frac{1}{\frac{1}{b}-j \omega}\right) \\
& =\frac{1}{1+b^{2} \omega^{2}}
\end{aligned}
$$

Now for a R.V. X of mean m, and using the formula on page 8 of the Lecture to account for the shift, the characteristic function becomes:

$$
\Phi_{X}(\omega)=\frac{e^{j m \omega}}{1+b^{2} \omega^{2}}
$$

By the moment theorem,

$$
\begin{aligned}
E X & =\left.(1 / j) \frac{d}{d \omega} \frac{e^{j m \omega}}{1+b^{2} \omega^{2}}\right|_{\omega=0} \\
& =\left.(1 / j)\left(\frac{-2 b^{2} \omega}{\left(1+b^{2} \omega^{2}\right)^{2}} e^{j m \omega}+\frac{j m e^{j m \omega}}{1+b^{2} \omega^{2}}\right)\right|_{\omega=0} \\
& =m
\end{aligned}
$$

By taking one more derivative, we find

$$
\begin{aligned}
E X^{2}= & -\left.\frac{d}{d \omega}\left(\frac{-2 b^{2} \omega}{\left(1+b^{2} \omega^{2}\right)^{2}} e^{j m \omega}+\frac{j m e^{j m \omega}}{1+b^{2} \omega^{2}}\right)\right|_{\omega=0} \\
= & -\left(\frac{-\left(2 b^{2}\right)\left(1+b^{2} \omega^{2}\right)^{2}+2 b^{2} \omega\left(1+b^{2} \omega^{2}\right)\left(2 b^{2} \omega\right)}{\left(1+b^{2} \omega^{2}\right)^{4}} e^{j m \omega}+\frac{-2 b^{2} \omega}{\left(1+b^{2} \omega^{2}\right)^{2}}(j m) e^{j m \omega}\right. \\
& \left.+\frac{-2 b^{2} \omega}{\left(1+b^{2} \omega^{2}\right)^{2}}(j m) e^{j m \omega}+\frac{1}{\left(1+b^{2} \omega^{2}\right)^{2}}(j m)^{2} e^{j m \omega}\right)\left.\right|_{\omega=0} \\
= & 2 b^{2}+m^{2} .
\end{aligned}
$$

Hence, the variance is $2 b^{2}$.

Question 6.3

(a) The exponential random variable Z has the density $f_{Z}(\cdot)=\left\{5 \mu e^{-5 \mu z}, z \in R_{+}, \mu>0\right\}$. Find the characteristic function $\Phi_{Z}(\omega), \omega \in R$.
(b) Let the random variable W be defined by $W=3\left(Z_{1}\right)-3\left(Z_{2}\right)$, where Z_{1} and Z_{2} are independent identically distributed exponential random variables with parameter λ. Find $\Phi_{W}(\omega), \omega \in R$.
(c) Using the one-to-one relation of characteristic functions and densities and part (b), find the density of W. (Hint: check Question 2.)

Q 6.3 Solution:

(a) We can obtain the characteristic function from a table or by integration. Let's integrate.

$$
\Phi_{Z}(w)=\int_{0}^{\infty} e^{j t x} 5 \mu e^{-5 \mu x} d x=\frac{5 \mu}{5 \mu-j w}
$$

(b) First, observe that the characteristic function of $-3 Z_{2}$ is

$$
\Phi_{-3 Z_{2}}(w)=\Phi_{Z_{2}}(-3 w),
$$

by the scaling property seen earlier. By independence, we have

$$
\begin{aligned}
\Phi_{W}(w) & =\Phi_{3 Z_{1}}(w) \Phi_{-3 Z_{2}}(w) \\
& =\Phi_{Z_{1}}(3 w) \Phi_{Z_{2}}(-3 w) \\
& =\frac{\lambda}{\lambda-j 3 w} \frac{\lambda}{\lambda+j 3 w} \\
& =\frac{\lambda^{2}}{\lambda^{2}+9 w^{2}}=\Phi_{X}(w)
\end{aligned}
$$

(c) Since $\Phi_{W}(t)=\Phi_{X}(t)$, by the inversion formula, X and W have the same distribution if we let $\lambda=\frac{3}{b}$ and $m=0$. Hence, for all x

$$
f_{W}(x)=\frac{\lambda e^{-\frac{\lambda|x|}{3}}}{6}
$$

Question 6.4

X is a scalar random variable distributed $N\left(\mu, \sigma^{2}\right)=N(1,4), \sigma>0$. Let $Z=g(X)=\frac{X^{2}}{2}$. Find the density $F_{Z}(z)$ of Z for $z>0$.

Q 6.4 Solution:

X is a random variable with Gaussian distribution $N(1,4)$, so

$$
f_{X}(x)=\frac{1}{2 \sqrt{2 \pi}} e^{-\frac{(x-1)^{2}}{8}}
$$

Since $g(x)=\frac{x^{2}}{2}$ then $g^{-1}(x)= \pm \sqrt{2 x}$. we know

$$
f_{Z}(z)=\sum_{g^{-1}(z) \in A_{i}} f_{X}\left(g^{-1}(z)\right) \cdot\left|\frac{d g^{-1}(z)}{d z}\right|
$$

Therefore

$$
f_{Z}(z)=\frac{1}{2 \sqrt{2 \pi}} e^{-\frac{(\sqrt{2 z}-1)^{2}}{8}} \times \frac{1}{\sqrt{2 z}}+\frac{1}{2 \sqrt{2 \pi}} e^{-\frac{(-\sqrt{2 z}-1)^{2}}{8}} \times \frac{-1}{\sqrt{2 z}}
$$

which equals to

$$
f_{Z}(z)=\frac{1}{4 \sqrt{\pi z}}\left[e^{-\frac{(\sqrt{2 z}-1)^{2}}{8}}-e^{-\frac{(-\sqrt{2 z}-1)^{2}}{8}}\right]
$$

for $z \geq 0$ and 0 otherwise.

Question 6.5

Many people believe that the daily change of price of a company's stock on the stock market is a random variable with mean 0 and variance σ^{2}. That is, if Y_{n} represents the price of the stock on the nth day, then

$$
Y_{n}=Y_{n-1}+X_{n} \quad n \geq 1
$$

where X_{1}, X_{2}, \ldots are independent and identically distributed random variables with mean 0 and variance σ^{2}. Suppose that the stock's price today is 100 . If $\sigma^{2}=1$, what can you say about the probability that the stock's price will exceed 105 after 10 days?

Q 6.5 Solution:

We have $Y_{10}=Y_{0}+\sum_{i=1}^{10} X_{i}, E\left(Y_{10}\right)=\mu=100$ and $E\left(\left(Y_{10}-\mu\right)^{2}\right)=\sigma^{2}=10$. We wish to apply Chebyshev's inequality

$$
P\left(\left|Y_{10}-\mu\right| \geq k \sigma\right) \leq \frac{1}{k^{2}}
$$

Noting the symmetry of Y_{10}, we can half Chebyshev's inequality, drop the absolute value and hence obtain a bound for $P\left(Y_{10}>105\right.$) (with $k=\frac{5}{\sqrt{10}}$)

$$
P\left(Y_{10}-100 \geq 5\right) \leq \frac{1}{2 k^{2}}=\frac{1}{5}
$$

