ECSE 304-305 Assignment $6 \quad$ Winter 2008

Return by noon, 30th October

Question 6.1

A scalar random variable X is sent through a multiplicative coding channel which generates the output $Z=X Y$. The independent positive scalar random variables X and Y have the densities $\left\{f_{X}(x)=x^{-2}, 1 \leq x<\infty,\right\}$ and $\left\{f_{Y}(y)=2 y^{-3} ; 1 \leq\right.$ $y<\infty\}$, respectively.
(a) Find the densities of the random variables: $X^{\prime}=\log X, 1 \leq X<\infty$, and $\quad Y^{\prime}=\log Y, 1 \leq Y<\infty$, on $R_{+}=[0, \infty)$.
(b) Find the characteristic functions of the densities of X^{\prime}, Y^{\prime} and $Z^{\prime}=\log Z$.
(c) Give the probability density of the coded version Z of the signal X.

Question 6.2

Find (a) the mean value μ, and (b) the variance σ^{2} of an RV X with the Laplace density

$$
f_{X}(x)=\frac{1}{2 b} e^{-2|x-m| / 2 b},
$$

where b and m are real constants, $b>0$ and $-\infty<m<\infty$.
Find the corresponding characteristic function $\Phi_{X}(\omega)$ and verify the values found above for μ, σ^{2} by use of the Moment Theorem.

Question 6.3

(a) The exponential random variable Z has the density $f_{Z}(\cdot)=\left\{5 \mu e^{-5 \mu z}, z \in R_{+}, \mu>0\right\}$. Find the characteristic function $\Phi_{Z}(\omega), \omega \in R$.
(b) Let the random variable W be defined by $W=3\left(Z_{1}\right)-3\left(Z_{2}\right)$, where Z_{1} and Z_{2} are independent identically distributed exponential random variables with parameter λ. Find $\Phi_{W}(\omega), \omega \in R$.
(c) Using the one-to-one relation of characteristic functions and densities and part (b), find the density of W. (Hint: check Question 2.)

Question 6.4

X is a scalar random variable distributed $N\left(\mu, \sigma^{2}\right)=N(1,4), \sigma>0$.
Let $Z=g(X)=\frac{X^{2}}{2}$. Find the density $f_{Z}(\cdot)$ of Z for $z>0$.

Question 6.5

Many people believed (before October, 2008) that the daily change of price of a company's stock on the stock market is a random variable with mean 0 and variance σ^{2}. That is, if Y_{n} represents the price of the stock on the nth day, then

$$
Y_{n}=Y_{n-1}+X_{n} \quad n \geq 1
$$

where X_{1}, X_{2}, \ldots are independent and identically distributed random variables with mean 0 and variance σ^{2}. Accepting this, suppose that the stock's price today is 100 . If $\sigma^{2}=1$, use the CLT to estimate the probability that the stock's price will exceed 105 after 10 days.

