ECSE 304-305 Assignment 6 Winter 2008

Return by noon, 30th October

Question 6.1

A scalar random variable X is sent through a *multiplicative* coding channel which generates the output Z = XY. The independent positive scalar random variables X and Y have the densities $\{f_X(x) = x^{-2}, 1 \le x < \infty, \}$ and $\{f_Y(y) = 2y^{-3}; 1 \le y < \infty\}$, respectively.

- (a) Find the densities of the random variables: $X' = \log X, \ 1 \le X < \infty,$ and $Y' = \log Y, \ 1 \le Y < \infty,$ on $R_+ = [0, \infty).$
- (b) Find the characteristic functions of the densities of X', Y' and $Z' = \log Z$.
- (c) Give the probability density of the coded version Z of the signal X.

Question 6.2

Find (a) the mean value μ , and (b) the variance σ^2 of an RV X with the Laplace density

$$f_X(x) = \frac{1}{2b}e^{-2|x-m|/2b},$$

where b and m are real constants, b > 0 and $-\infty < m < \infty$.

Find the corresponding characteristic function $\Phi_X(\omega)$ and verify the values found above for μ , σ^2 by use of the Moment Theorem.

Question 6.3

- (a) The exponential random variable Z has the density $f_Z(\cdot) = \{5\mu e^{-5\mu z}, z \in R_+, \mu > 0\}$. Find the characteristic function $\Phi_Z(\omega), \omega \in R$.
- (b) Let the random variable W be defined by $W = 3(Z_1) 3(Z_2)$, where Z_1 and Z_2 are independent identically distributed exponential random variables with parameter λ . Find $\Phi_W(\omega), \omega \in R$.
- (c) Using the one-to-one relation of characteristic functions and densities and pa rt (b), find the density of W. (Hint: check Question 2.)

Question 6.4

X is a scalar random variable distributed $N(\mu, \sigma^2) = N(1, 4), \, \sigma > 0.$

Let $Z = g(X) = \frac{X^2}{2}$. Find the density $f_Z(\cdot)$ of Z for z > 0.

Question 6.5

Many people believed (before October, 2008) that the daily change of price of a company's stock on the stock market is a random variable with mean 0 and variance σ^2 . That is, if Y_n represents the price of the stock on the *n*th day, then

$$Y_n = Y_{n-1} + X_n \qquad n \ge 1$$

where $X_1, X_2,...$ are independent and identically distributed random variables with mean 0 and variance σ^2 . Accepting this, suppose that the stock's price today is 100. If $\sigma^2 = 1$, use the CLT to estimate the probability that the stock's price will exceed 105 after 10 days.