Question 4.1 [15]

Let X be a random point be selected from the interval 0,3) (i.e. by the EPP, or, equivalently, such that X has a linearly increasing distribution function). What is the probability that (i) $X^{2}-5 X+6>0$, and (ii) $X^{2}-5 X+6 \leq 1$

Solution:

(i) $X^{2}-5 X+6>0$ We have that

$$
F_{X}(x)=\left\{\begin{array}{cl}
0 & x<0 \\
\frac{x}{3} & 0 \leq x<3 \\
1 & x \geq 3
\end{array}\right.
$$

and since

$$
P\left(X^{2}-5 X+6>0\right)=1-P(2 \leq X \leq 3)
$$

we can compute $P\left(X^{2}-5 X+6>0\right)=1-\left(F_{X}(3)-F_{X}(2)\right)=\frac{2}{3}$
(ii) $X^{2}-5 X+6 \leq 1$ We can compute
$X^{2}-5 X+6=1 \Rightarrow x=\frac{5 \pm \sqrt{5}}{2}$
So $P\left(X^{2}-5 X+6 \leq 1\right)=F_{X}(3)-F_{X}\left(\frac{5-\sqrt{5}}{2}\right)=\frac{1+\sqrt{5}}{6}$

Question 4.2 [15]

A student takes a certain type of test four times and the student's final score will be the maximum of the test score. Thus

$$
\begin{equation*}
\mathbf{X}=\max \left\{\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, \mathbf{X}_{\mathbf{3}}, \mathbf{X}_{\mathbf{4}}\right\} \tag{1}
\end{equation*}
$$

where $\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, \mathbf{X}_{\mathbf{3}}, \mathbf{X}_{\mathbf{4}}$ are the four test scores and \mathbf{X} is the final score. Assume the score takes values $x, 0 \leq x \leq 100$, and the results of the tests form an independent set of random variables, each with distribution function $F_{X_{i}}=F(x)=P\left(\mathbf{X}_{\mathbf{i}} \leq x\right), \quad 1 \leq i \leq 4$. Let the distribution function of \mathbf{X} be written as

$$
\begin{equation*}
F_{\mathbf{X}}(x)=\{P(\mathbf{X} \leq x), \quad 0 \leq x \leq 100\} \tag{2}
\end{equation*}
$$

(a) Find which of the following gives $F_{\mathbf{X}}(\cdot)$ and give the derivation:
(i) $F^{1 / 4}\left(x^{4}\right)$,
(ii) $F^{4}(x)$,
(iii) $F\left(x^{4}\right)$
(b) If $F(x)=\left\{0, x<0 ; \frac{x}{100}, 0 \leq x \leq 100 ; 1,100 \leq x\right\}$, and given that any score \mathbf{X}_{i} is uniformly distributed over $[0,100]$, find $F_{\mathbf{X}}(80)=\operatorname{Pr}\{\mathbf{X} \leq 80\}$.

Solution:

(a) We have that $\mathbf{X}=\max \left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3} \mathbf{X}_{4}\right\}$. Noting that the event $\{x \leq \mathbf{X}\}$ is equivalent to the event $\left\{\mathbf{X}_{1} \leq x\right\} \cap\left\{\mathbf{X}_{2} \leq x\right\} \cap\left\{\mathbf{X}_{3} \leq x\right\} \cap\left\{\mathbf{X}_{4} \leq x\right\}$ we have that

$$
\begin{aligned}
F_{\mathbf{x}}(x) & =\{P(\mathbf{X} \leq x), 0 \leq x \leq 100\} \\
& =P\left(\max \left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3} \mathbf{X}_{4}\right\} \leq x\right) \\
& =P\left(\left\{\mathbf{X}_{1} \leq x\right\} \cap\left\{\mathbf{X}_{2} \leq x\right\} \cap\left\{\mathbf{X}_{3} \leq x\right\} \cap\left\{\mathbf{X}_{4} \leq x\right\}\right) \\
& =\prod_{i=1}^{4} P\left(\mathbf{X}_{i} \leq x\right), \quad \text { since } \mathbf{X}_{i} \text { 's are independent } \\
& =F^{4}(x)
\end{aligned}
$$

(b) $F_{\mathbf{X}}(80)=P(\mathbf{X} \leq 80)=F^{4}(80)=\left(\frac{80}{100}\right)^{4}=\frac{256}{625}=0.4096$

Question 4.3 [15]

For a constant parameter $a>0$, a Rayleigh random variable X has PDF

$$
f_{X}(x)=\left\{\begin{array}{cc}
a^{2} x e^{-a^{2} x^{2} / 2} & x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

What is the CDF of X ?

Solution:

We know

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) d y
$$

For $x \leq 0$ we have $F_{X}(x)=0$ since $f_{X}(x)=0$. For $x>0$

$$
F_{X}(x)=\int_{0}^{x}\left[a^{2} y e^{-a^{2} y^{2} / 2}\right] d y=-\left.e^{-a^{2} y^{2} / 2}\right|_{0} ^{x}=1-e^{-a^{2} x^{2} / 2} .
$$

Therefore

$$
F_{X}(x)=\left\{\begin{array}{cc}
1-e^{-a^{2} x^{2} / 2} & x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Question 4.4 [20]

The (cumulative) distribution function of the random variable U is

$$
F_{U}(u)= \begin{cases}0 & u<-5 \\ (u+5) / 8 & -5 \leq u<-3 \\ 1 / 4 & -3 \leq u<3 \\ 1 / 4+3(u-3) / 8 & 3 \leq u<5 \\ 1 & u \geq 5\end{cases}
$$

(a) What is $E[U]$?
(b) What is $\operatorname{Var}[U]$?
(c) What is $E\left[2^{U}\right]$?

Solution:

(a) By definition $E[U]=\int_{-\infty}^{\infty} u f(u) d u$. We find that the density function $f(u)$ has the following values:

$$
\left.\begin{array}{rl}
f_{U}(u) & = \begin{cases}0 & u<-5 \\
1 / 8 & -5 \leq u<-3, \\
0 & -3 \leq u<3, \\
3 / 8 & 3 \leq u<5, \\
0 & u \geq 5 .\end{cases} \\
E[U] & =\frac{1}{8} \int_{-5}^{-3} u d u+\frac{3}{8} \int_{3}^{5} u d u
\end{array}\right]=2 \text {. }
$$

(b) We want to compute $\operatorname{Var}[U]=E\left[U^{2}\right]-(E[U])^{2}$. We know $E[U]$ so all we need to find is $E\left[U^{2}\right]$. Using $E[g(U)]=\int_{-\infty}^{\infty} g(u) f_{U}(u) d u$ we get

$$
\begin{aligned}
E\left[U^{2}\right] & =\int_{-\infty}^{\infty} u^{2} f_{U}(u) d u \\
& =\frac{49}{3}
\end{aligned}
$$

Therefore,

$$
\operatorname{Var}[U]=\frac{49}{3}-2^{2}=\frac{37}{3}
$$

(c)

$$
\begin{aligned}
E\left[2^{U}\right] & =\int_{-\infty}^{\infty} 2^{u} f_{U}(u) d u \\
& =\left[\frac{2^{u}}{8 \ln 2}\right]_{-5}^{-3}+\left[\frac{3\left(2^{u}\right)}{8 \ln 2}\right]_{3}^{5} \\
& =\frac{2307}{256 \ln 2} \simeq 18
\end{aligned}
$$

Question 4.5 [20]
X is a continuous uniform $(-4,4)$ random variable.
(a) What is the $\operatorname{PDF} f_{X}(x)$?
(b) What is the CDF $F_{X}(x)$?
(c) What is $E[X]$?
(d) What is $E\left[X^{5}\right]$?
(e) What is $E\left[e^{X}\right]$?

Solution:

X is a uniform random variable with $a=-4$ and $b=4$. (a)

$$
f_{X}(x)= \begin{cases}\frac{1}{8} & -4 \leq x<4 \\ 0 & \text { otherwise }\end{cases}
$$

(b)

$$
F_{X}(x)= \begin{cases}0 & x<-4 \\ \frac{x}{8}+\frac{1}{2} & -4 \leq x<4 \\ 1 & x>4\end{cases}
$$

(c)

$$
\begin{aligned}
E[X] & =\frac{a+b}{2} \\
& =0
\end{aligned}
$$

(d)

$$
\begin{aligned}
E\left[X^{5}\right] & =\int_{-\infty}^{\infty} x^{5} f(x) d x \\
& =\int_{-4}^{4} \frac{x^{5}}{8} d x \\
& =0
\end{aligned}
$$

remark:

$$
E\left[X^{n}\right]= \begin{cases}0 & n: \text { odd } \\ \frac{4^{n}}{n+1} & n: \text { even }\end{cases}
$$

(e)

$$
\begin{aligned}
E\left[e^{x}\right] & =\int_{-\infty}^{\infty} e^{x} f(x) d x \\
& =\int_{-4}^{4} \frac{e^{x}}{8} d x \\
& =\frac{e^{4}-e^{-4}}{8}=\frac{\sinh 4}{4} .
\end{aligned}
$$

Question 4.6 [15]

The time until a small meteorite first lands anywhere in the Sahara desert is modeled as an exponential random variable with a mean ($=$ the recipricol of the rate λ) of 10 days. The time is currently midnight. What is the probability (to two decimal places) that a meteorite first lands some time between 6 a.m. and 6 p.m. of the first day?

Solution:

Let the random variable X denote the meteorite's landing time expressed in hours. It is given that X is modelled as a random variable with a probability density defined as follows:

$$
X \sim f(X)= \begin{cases}\lambda \exp \{-\lambda X\} & \text { if } X \geq 0 \\ 0 & \text { if } X<0\end{cases}
$$

It is given that the mean of the distribution, or $E[X]=10$ days, i.e. 240 hours. Since for an exponentially distributed random variable

$$
E[X]=\frac{1}{\lambda} \quad \Longrightarrow \quad \lambda=0.0042
$$

Given that it is currently midnight (or 00:00 time), it is requested to know the probability that the meteorite will land at any time between 06:00 am and 06:00 pm (or 18:00). This can be expressed in terms of probability as follows: $\operatorname{Pr}\left(x_{1}=6<X \leq x_{2}=18\right)$ where,

$$
\begin{equation*}
\operatorname{Pr}\left(x_{1}<X \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} f(X) d X \tag{3}
\end{equation*}
$$

For an exponential random variable:

$$
\begin{aligned}
\operatorname{Pr}\left(x_{1}<X \leq x_{2}\right) & =\lambda \int_{x_{1}}^{x_{2}} \exp \{-\lambda X\} d X \\
& =\lambda\left[-\frac{1}{\lambda} \exp \{-\lambda X\}\right]_{x_{1}}^{x_{2}} \\
& =-\exp \left\{-\lambda x_{2}\right\}+\exp \left\{-\lambda x_{1}\right\} \\
\operatorname{Pr}(6<X \leq 18) & =0.0479
\end{aligned}
$$

