Return by noon, Thursday, 9 October

Question 4.1 (SG p. 152)

Let X be a random point be selected from the interval $[0,3]$ (i.e. by the EPP, or, equivalently, such that X has a linearly increasing distribution function). What is the probability (expressed in terms of square roots if necessary) that
(i) $X^{2}-5 X+6>0, \quad$ and
(ii) $X^{2}-5 X+6 \leq 1$?

Question 4.2

A student takes a certain type of test four times and the student's final score will be the maximum of the test score. Thus

$$
\begin{equation*}
\mathbf{X}=\max \left\{\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, \mathbf{X}_{\mathbf{3}}, \mathbf{X}_{\mathbf{4}}\right\} \tag{1}
\end{equation*}
$$

where $\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, \mathbf{X}_{\mathbf{3}}, \mathbf{X}_{\mathbf{4}}$, are the four test scores and \mathbf{X} is the final score. Assume the score takes values $x, 0 \leq x \leq 100$, and the results of the tests form an independent set of random variables, each with distribution function $F_{\mathbf{X}_{\mathbf{i}}}=F(x)=P\left(\mathbf{X}_{\mathbf{i}} \leq x\right), \quad 1 \leq i \leq 4$. Let the distribution function of \mathbf{X} be written as

$$
\begin{equation*}
F_{\mathbf{X}}(x)=\{P(\mathbf{X} \leq x), \quad 0 \leq x \leq 100\} \tag{2}
\end{equation*}
$$

(a) Find which of the following gives $F_{\mathbf{X}}(\cdot)$ and give the derivation:
(i) $F^{1 / 4}\left(x^{4}\right)$,
(ii) $F^{4}(x)$,
(iii) $F\left(x^{4}\right)$
(b) If $F(x)=\left\{0, x<0 ; \frac{x}{100}, 0 \leq x \leq 100 ; 1,100 \leq x\right\}$, and given that any score \mathbf{X}_{i} is uniformly distributed over $[0,100]$, find $F_{\mathbf{X}}(80)=\operatorname{Pr}\{\mathbf{X} \leq 80\}$.

Question 4.3 For a constant parameter $a>0$, a Rayleigh random variable X has PDF

$$
f_{X}(x)= \begin{cases}a^{2} x e^{-a^{2} x^{2} / 2} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

What is the CDF of X ?

Question 4.4 The cumulative distribution function of random variable U is

$$
F_{U}(u)= \begin{cases}0 & u<-5 \\ (u+5) / 8 & -5 \leq u<-3, \\ 1 / 4 & -3 \leq u<3, \\ 1 / 4+3(u-3) / 8 & 3 \leq u<5, \\ 1 & u \geq 5\end{cases}
$$

(a) What is $E[U]$?
(b) What is Var $[U]$?
(c) What is $E\left[2^{U}\right]$?

Question $4.5 X$ is a continuous uniform $(-4,4)$ random variable. Find the following:
(a) The PDF $f_{X}(x)$
(b) The CDF $F_{X}(x)$
(c) $E[X]$
(d) $E\left[X^{5}\right]$
(e) $E\left[e^{X}\right]$
4.6 The time until a small meteorite first lands anywhere in the Sahara desert is modeled as an exponential random variable with a mean (= the recipricol of the rate λ) of 10 days. The time is currently midnight. What is the probability (to two decimal places) that a meteorite first lands some time between 6 a.m. and 6 p.m. of the first day?

