Question 10.1 (Random Phase Shifted Signal)

The scalar sinusoidal signal $x(t)=\sin (\theta t), t \in \mathbb{R}$, passes through a channel C where it is distorted by a constant (in time) random additive phase change between the input and the output of C. This produces the random signal

$$
y(t)=\sin (\theta t+w), \quad t \in \mathbb{R}
$$

where the random disturbance w is independent of time and is uniformly distributed on $[0,2 \pi]$, i.e. $w \sim U[0,2 \pi]$.

By explicitly calculating (a) the mean of the output process $E y(t), t \in \mathbb{R}$, and (b) the covariance $C(t, s)=E(y(t)-E y(t))(y(s)-E y(s)), s, t \in \mathbb{R}$, show whether y is a wide sense stationary process.

Question 10.1 Solution

(a)

$$
\begin{aligned}
E[y(t)] & =\int_{-\infty}^{\infty} y(t) f_{W}(w) d w \\
& =\int_{0}^{2 \pi} \sin (\theta t+w) \cdot \frac{1}{2 \pi} d w \\
& =\frac{1}{2 \pi}[\cos (\theta t+w)]_{w=2 \pi}^{0} \\
& =\frac{1}{2 \pi}[\cos (\theta t)-\cos (\theta t+2 \pi)] \\
& =0
\end{aligned}
$$

(b)

$$
\begin{array}{rlr}
C(t, s)= & E(y(t)-E y(t))(y(s)-E(y(s))) \\
& =E(y(t) y(s)) & \quad \text { (substitute } E y(t) \text { and } E y(s)) \\
= & \int_{-\infty}^{\infty} \sin (\theta t+w) \sin (\theta s+w) f_{W}(w) d w & \\
= & \frac{1}{4 \pi} \int_{0}^{2 \pi} \cos (\theta t-\theta s)-\cos (\theta t+\theta s+2 w) d w & \left(\text { as } \sin A \sin B=\frac{\cos (A-B)-\cos (A+B)}{2}\right) \\
= & \frac{1}{4 \pi}\left[\cos (\theta t-\theta s) w-\frac{1}{2} \sin (\theta t+\theta s+2 w)\right]_{0}^{2 \pi} & \\
= & \frac{1}{4 \pi}\left[2 \pi \cos (\theta t-\theta s)-\frac{1}{2} \sin (t \theta t+\theta s-4 \pi)\right. & \\
& \left.\quad-0+\frac{1}{2} \sin (\theta t+\theta s)\right] \\
= & \frac{1}{4 \pi}\left[2 \pi \cos (\theta t-\theta s)-\frac{1}{2} \sin (t \theta t+\theta s)\right. & \left.\quad+\frac{1}{2} \sin (\theta t+\theta s)\right] \\
= & \frac{1}{4 \pi} 2 \pi \cos (\theta t-\theta s) & \quad \text { (where } \tau=t-s) \\
= & \frac{1}{2} \cos (\theta \tau) \quad
\end{array}
$$

Therefore $y(t)$ is w.s.s.

Question 10.2 (Random Bank Balances and the \$ Fluctuates too!)

A bank client's income process I is a w.s.s. stochastic process with constant mean m^{I} and autocorrelation function $R^{I}(\tau), \tau \in \mathbb{R}$, and the client's expenditure process K is a w.s.s. stochastic process with constant mean m^{K} and autocorrelation function $R^{K}(\tau), \tau \in \mathbb{R}$. I and K are independent scalar processes. (We allow the income process to possibly take negative values (taxation!) and the expenditure process to possibly take positive values (refunds!).)
(a) Find the mean $m^{B}(t)$ and autocorrelation function $R^{B}(t+\tau, t), t, \tau \in \mathbb{R}$, of the client's change of balance process $B(t)=I(t)-K(t), t \in \mathbb{R}$. Is B a w.s.s. stochastic process ?
(b) Valued in a second (rather unstable!) currency, the client's change of balance process is given by $D(t)=s(t) \cdot B(t), t \in \mathbb{R}$, where the exchange rate process $s(t), t \in \mathbb{R}$, is a w.s.s. stochastic process which is independent of B and has mean 1 and autocorrelation function $R^{s}(\tau), \tau \in \mathbb{R}$.

Show whether the autocorrelation function $R^{D}(t+\tau, t), t, \tau \in \mathbb{R}$, is t-shift invariant.

Question 10.2 Solution

(a) We are given that $B(t)=I(t)-K(t), \quad t \in \mathbb{R}$. For $m^{B}(t)$:

$$
\begin{aligned}
m^{B}(t) & =E[B(t)] \\
& =E[I(t)]-E[K(t)] \\
& =m^{I}-m^{K}
\end{aligned}
$$

Now for $R^{B}(t+\tau, t)$:

$$
\begin{aligned}
R^{B}(t+\tau, t) & =E[B(t+\tau) \cdot B(t)] \\
& =E[I(t+\tau) \cdot I(t)]-E[I(t+\tau) \cdot K(t)]-E[K(t+\tau) \cdot I(t)]+E[K(t+\tau) \cdot K(t)] \\
& =R^{I}(\tau)-E[I(t+\tau)] E[K(t)]-E[K(t+\tau)] E[I(t)]+R^{K}(\tau),
\end{aligned}
$$

as $I(t)$ and $K(t)$ are indpendent.

$$
\begin{aligned}
R^{B}(t+\tau, t) & =R^{I}(\tau)-m^{I} \cdot m^{K}-m^{K} \cdot m^{I}+R^{K}(\tau) \\
& =R^{I}(\tau)+R^{K}(\tau)-2 \cdot m^{I} \cdot m^{K}
\end{aligned}
$$

Therefore $B(t)$ is w.s.s since its meanis constant and R is a function of τ.
(b) Check if the autocorrelation function $R^{D}(t+\tau, t), t, \tau \in \mathbb{R}$, is t-shift invariant.

$$
\begin{aligned}
R^{D}(t+\tau, t) & =E[D(t+\tau) D(t)] \\
& =E[s(t+\tau) \cdot B(t+\tau) \cdot s(t) \cdot B(t)] \\
& =E[s(t+\tau) \cdot s(t)] \cdot E[B(t+\tau) B((t)]
\end{aligned}
$$

since $s(t)$ and $B(t)$ are independent. Then

$$
R^{D}(t+\tau, t)=R^{s}(\tau) \cdot R^{B}(\tau)
$$

Therefore $R^{D}(t+\tau, t)$ is t-shift invariant.

10.3 (Long Sequence of Filters in Series: Noise to Music?)

(i) A zero mean wide sense stationary scalar process X with covariance function $R_{X}(t), t \in \mathbb{R}$, and spectral density $S_{X}(f), f \in \mathbb{R}$, is passed through a linear filter (i.e. time invariant linear system) L with impulse response $\ell(t), t \in \mathbb{R}$, and transfer function $L(f), f \in \mathbb{R}$. The output process is denoted Y. Find an expression for the cross covariance $E Y(t+\tau) X(t), t, \tau \in \mathbb{R}$, in terms of an integral of the impulse response $\ell(\cdot)$ and the covariance function $R_{X}(\cdot)$ of the input process X.
(ii) Use the Wiener-Khinchin Theorem to give the spectral density $S_{Y}(f), f \in \mathbb{R}$, of the process Y in terms of the transform of the impulse response $\ell(\cdot)$ and the spectral density of the process X.
(iii) If $L(f)=0,|f| \geq W$, and $S_{X}(f)=0,|f| \leq 2 W$, what is the covariance function $R_{Y}(\tau), \tau \in \mathbb{R}$? Explain your answer in terms of the frequency domain opeartion of the low pass filter L "matching" the input X; would L make a good suppressor of the process X if X were regarded as a noise process?
(iv) White noise N with spectral density 1 is passed into the first of a chain of n filters $L_{1}^{n}, L_{2}^{n}, \ldots, L_{n}^{n}$, where for each n the transfer function L_{k}^{n} is $\left(1+\frac{\alpha 2 \pi j f}{\sqrt{n}}\right)^{-1}, f \in \mathbb{R}$, $1 \leq k \leq n$.

Give the spectral density $S_{Z_{n}}(f), f \in \mathbb{R}$, of the process Z_{n} emitted at the output of the last filter L_{n}^{n}.
(v) Let $n \rightarrow \infty$ and give an analytic expression for the spectral density $S_{Z_{\infty}}(f), f \in \mathbb{R}$.
(i)

$$
\begin{aligned}
E[Y(t+\tau) X(t)] & =E\left[\int_{-\infty}^{\infty} \ell(r) \cdot X(t+\tau-r) d r \cdot X(t)\right] \\
& =\int_{-\infty}^{\infty} \ell(r) \cdot E[X(t+\tau-r) \cdot X(t)] d r \\
& =\int_{-\infty}^{\infty} \ell(r) \cdot R_{X}(\tau-r) d r
\end{aligned}
$$

(ii) $S_{Y}(f)=|L(f)|^{2} S_{X}(f)$
(iii)

Figure 1: $L(f)=0, \quad|f| \geq W$

Figure 2: $S_{X}(f)=0, \quad|f| \leq 2 W$
$S_{Y}(f)=|L(f)|^{2} S_{X}(f)=0$. Hence the filter $L(f)$ is a good suppressor of the signal $X(t)$ since it completely filters out all the high frequencies X.
(iv) $S_{Z_{n}}=\left|\left(1+\frac{j \alpha 2 \pi f}{\sqrt{n}}\right)\right|^{2 n} \cdot S_{X}(f)$
(v)

$$
\begin{aligned}
S_{Z_{n}} & =\left|\frac{1}{1+\frac{j 2 \alpha \pi f}{\sqrt{n}}}\right|^{2 n} \cdot S_{X}(f) \\
& =\left|\frac{1}{1+\frac{4 \alpha^{2} \pi^{2} f^{2}}{n}}\right|^{n} \cdot S_{X}(f) \\
& =\left|1+\frac{4 \alpha^{2} \pi^{2} f^{2}}{n}\right|^{-n} \cdot S_{X}(f)
\end{aligned}
$$

Using the fact that $\lim _{n \rightarrow \infty}(1+x / n)^{n}=\exp \{x\}$, it follows that

$$
\lim _{n \rightarrow \infty}=S_{Z_{n}}=S_{Z_{\infty}}=\exp \left\{-4 \alpha^{2} \pi^{2} f^{2}\right\} \cdot S_{X}(f)
$$

10.4 (Radio City Contends with Noise in Signal)

(i) At Radio City a zero mean scalar wide sense stationary process X with correlation function $\left\{e^{-2 \lambda|\tau|},-\infty<\tau<\infty\right\}, \lambda>0$, is passed through a linear system L with impulse response $\left\{e^{-\mu \tau}, 0 \leq \tau<\infty\right\}, \mu>0$.
The output Y is disturbed by a zero mean scalar additive wide sense stationary noise process Z, where Z has correlation function $\left\{\sigma^{2} e^{-2 \gamma|\tau|},-\infty<\tau<\infty\right\}, \gamma>$ 0 , and is independent of Y.

What is the spectral density of the resulting transmitted process $M=Y+Z$?
(ii) What is the signal to noise power ratio $\gamma_{\sigma^{2}}=\frac{S_{M}(f)}{S_{Z}(f)}, f \in \mathbb{R}$? What happens to $\gamma_{\sigma^{2}}$ as the noise increases, i.e. $\sigma^{2} \rightarrow \infty$, and decreases, i.e. $\sigma^{2} \rightarrow 0$.

Question 10.4 Solution

(i) The autocorrelation of Y is given by

$$
S_{Y}(f)=\left|H_{L}(f)\right|^{2} S_{X}(f)
$$

where $H_{L}(f)$ is the frequency response of L.
The autocorrelation of X is

$$
R_{X}(\tau)=e^{-2 \lambda|\tau|}
$$

so its spectral density is

$$
\begin{aligned}
S_{X}(f) & =\int_{-\infty}^{\infty} e^{-2 \lambda|\tau| e^{-2 \pi j f \tau}} d \tau \\
& =\int_{-\infty}^{0} e^{2 \lambda \tau} e^{-j 2 \pi f \tau} d \tau+\int_{0}^{\infty} e^{-2 \lambda \tau} e^{-j 2 \pi f t} d \tau \\
& =\left[\frac{e^{\tau(2 \lambda-j 2 \pi f)}}{2 \lambda-j 2 \pi f}\right]_{-\infty}^{0}+\left[\frac{-e^{\tau(2 \lambda+j 2 \pi f)}}{2 \lambda+j 2 \pi f}\right]_{0}^{\infty} \\
& =\frac{1}{2 \lambda-j 2 \pi f}+\frac{1}{2 \lambda+j 2 \pi f} \\
& =\frac{2 \lambda+j 2 \pi f+2 \lambda-j 2 \pi f}{4 \lambda^{2}+4 \pi^{2} f^{2}} \\
& =\frac{\lambda}{\lambda^{2}+\pi^{2} f^{2}}
\end{aligned}
$$

the frequency response of L is

$$
\begin{aligned}
H_{L}(f) & =\int_{0}^{\infty} e^{-\mu \tau} e^{-j 2 \pi f \tau} d \tau \\
& =\left[\frac{e^{-\tau(\mu+j 2 \pi f)}}{\mu+j 2 \pi f}\right]_{0}^{\infty} \\
& =\frac{1}{\mu+j 2 \pi f}
\end{aligned}
$$

and its squared magnitude is

$$
\left|H_{L}(f)\right|^{2}=\frac{1}{\mu^{2}+4 \pi^{2} f^{2}}
$$

(The above expressions for $S_{X}(f)$ and $H_{L}(f)$ could also have been obtained from a table of Fourier transforms, instead of by integration.) Thus

$$
S_{Y}(f)=\frac{1}{\left(\lambda^{2}+\pi^{2} f^{2}\right)\left(\mu^{2}+4 \pi^{2} f^{2}\right)}
$$

Since Y and Z are independent,

$$
S_{M}(f)=S_{Z}(f)+S_{Y}(f)
$$

we have

$$
\begin{gathered}
R_{Z}(f)=e^{-2 \gamma|\tau|} \\
\left.S_{Z}(f)=\frac{\gamma}{\gamma^{2}+\pi^{2} f^{2}} \quad \text { (derived similarly to } S_{Z}(f)\right)
\end{gathered}
$$

and thus

$$
S_{M}(f)=\frac{\lambda}{\left(\lambda^{2}+\pi^{2} f^{2}\right)\left(\mu^{2}+4 \pi^{2} f^{2}\right)}+\frac{\gamma}{\gamma^{2}+\pi^{2} f^{2}}
$$

(ii)

