ECSE 304-305B Assignment 10 Solutions Fall 2008

Question 10.1 (Random Phase Shifted Signal)

The scalar sinusoidal signal $x(t) = sin(\theta t), t \in \mathbb{R}$, passes through a channel C where it is distorted by a constant (in time) random additive phase change between the input and the output of C. This produces the random signal

$$y(t) = \sin(\theta t + w), \quad t \in \mathbb{R},$$

where the random disturbance w is independent of time and is uniformly distributed on $[0, 2\pi]$, i.e. $w \sim U[0, 2\pi]$.

By explicitly calculating (a) the mean of the output process $Ey(t), t \in \mathbb{R}$, and (b) the covariance $C(t,s) = E(y(t) - Ey(t))(y(s) - Ey(s)), s, t \in \mathbb{R}$, show whether y is a wide sense stationary process.

Question 10.1 Solution

(a)

$$E[y(t)] = \int_{-\infty}^{\infty} y(t) f_W(w) dw$$

=
$$\int_{0}^{2\pi} \sin(\theta t + w) \cdot \frac{1}{2\pi} dw$$

=
$$\frac{1}{2\pi} [\cos(\theta t + w)]_{w=2\pi}^{0}$$

=
$$\frac{1}{2\pi} [\cos(\theta t) - \cos(\theta t + 2\pi)]$$

=
$$0$$

$$\begin{split} C(t,s) &= E(y(t) - Ey(t))(y(s) - E(y(s))) \\ &= E(y(t)y(s)) \qquad (\text{substitute } Ey(t) \text{ and } Ey(s)) \\ &= \int_{-\infty}^{\infty} \sin(\theta t + w) \sin(\theta s + w) f_W(w) \, dw \\ &= \frac{1}{4\pi} \int_{0}^{2\pi} \cos(\theta t - \theta s) - \cos(\theta t + \theta s + 2w) \, dw \quad (\text{as } \sin A \sin B = \frac{\cos(A - B) - \cos(A + B)}{2}) \\ &= \frac{1}{4\pi} \left[\cos(\theta t - \theta s) w - \frac{1}{2} \sin(\theta t + \theta s + 2w) \right]_{0}^{2\pi} \\ &= \frac{1}{4\pi} \left[2\pi \cos(\theta t - \theta s) - \frac{1}{2} \sin(\theta t + \theta s - 4\pi) \\ &\quad -0 + \frac{1}{2} \sin(\theta t + \theta s) \right] \\ &= \frac{1}{4\pi} \left[2\pi \cos(\theta t - \theta s) - \frac{1}{2} \sin(t\theta t + \theta s) \\ &\quad + \frac{1}{2} \sin(\theta t + \theta s) \right] \\ &= \frac{1}{4\pi} 2\pi \cos(\theta t - \theta s) \\ &= \frac{1}{2} \cos(\theta \tau) \qquad (\text{where } \tau = t - s) \end{split}$$

Therefore y(t) is w.s.s.

Question 10.2 (Random Bank Balances and the \$ Fluctuates too!)

A bank client's income process I is a w.s.s. stochastic process with constant mean m^{I} and autocorrelation function $R^{I}(\tau), \tau \in \mathbb{R}$, and the client's expenditure process K is a w.s.s. stochastic process with constant mean m^{K} and autocorrelation function $R^{K}(\tau), \tau \in \mathbb{R}$. Iand K are independent scalar processes. (We allow the income process to possibly take negative values (taxation!) and the expenditure process to possibly take positive values (refunds!).)

(a) Find the mean $m^B(t)$ and autocorrelation function $R^B(t + \tau, t), t, \tau \in \mathbb{R}$, of the client's change of balance process $B(t) = I(t) - K(t), t \in \mathbb{R}$. Is B a w.s.s. stochastic process ?

(b) Valued in a second (rather unstable!) currency, the client's change of balance process is given by $D(t) = s(t) \cdot B(t), t \in \mathbb{R}$, where the exchange rate process $s(t), t \in \mathbb{R}$, is a w.s.s. stochastic process which is independent of B and has mean 1 and autocorrelation function $R^{s}(\tau), \tau \in \mathbb{R}$.

Show whether the autocorrelation function $R^{D}(t+\tau,t), t, \tau \in \mathbb{R}$, is t-shift invariant.

Question 10.2 Solution

(a) We are given that B(t) = I(t) - K(t), $t \in \mathbb{R}$. For $m^B(t)$:

$$m^{B}(t) = E[B(t)]$$
$$= E[I(t)] - E[K(t)]$$
$$= m^{I} - m^{K}$$

Now for $R^B(t + \tau, t)$:

$$\begin{aligned} R^B(t+\tau,t) &= E[B(t+\tau).B(t)] \\ &= E[I(t+\tau).I(t)] - E[I(t+\tau).K(t)] - E[K(t+\tau).I(t)] + E[K(t+\tau).K(t)] \\ &= R^I(\tau) - E[I(t+\tau)]E[K(t)] - E[K(t+\tau)]E[I(t)] + R^K(\tau), \end{aligned}$$

as I(t) and K(t) are indpendent.

$$R^{B}(t+\tau,t) = R^{I}(\tau) - m^{I}.m^{K} - m^{K}.m^{I} + R^{K}(\tau)$$
$$= R^{I}(\tau) + R^{K}(\tau) - 2.m^{I}.m^{K}$$

Therefore B(t) is w.s.s since its meanis constant and R is a function of τ .

(b) Check if the autocorrelation function $R^D(t + \tau, t), t, \tau \in \mathbb{R}$, is t-shift invariant.

$$R^{D}(t + \tau, t) = E[D(t + \tau)D(t)]$$

= $E[s(t + \tau).B(t + \tau).s(t).B(t)]$
= $E[s(t + \tau).s(t)].E[B(t + \tau)B((t)],$

since s(t) and B(t) are independent. Then

$$R^D(t+\tau,t) = R^s(\tau).R^B(\tau)$$

Therefore $R^D(t + \tau, t)$ is t-shift invariant.

10.3 (Long Sequence of Filters in Series: Noise to Music?)

- (i) A zero mean wide sense stationary scalar process X with covariance function $R_X(t), t \in \mathbb{R}$, and spectral density $S_X(f), f \in \mathbb{R}$, is passed through a linear filter (i.e. time invariant linear system) L with impulse response $\ell(t), t \in \mathbb{R}$, and transfer function $L(f), f \in \mathbb{R}$. The output process is denoted Y. Find an expression for the cross covariance $EY(t+\tau)X(t), t, \tau \in \mathbb{R}$, in terms of an integral of the impulse response $\ell(\cdot)$ and the covariance function $R_X(\cdot)$ of the input process X.
- (ii) Use the Wiener-Khinchin Theorem to give the spectral density $S_Y(f)$, $f \in \mathbb{R}$, of the process Y in terms of the transform of the impulse response $\ell(\cdot)$ and the spectral density of the process X.
- (iii) If L(f) = 0, $|f| \ge W$, and $S_X(f) = 0$, $|f| \le 2W$, what is the covariance function $R_Y(\tau), \tau \in \mathbb{R}$? Explain your answer in terms of the frequency domain opeartion of the low pass filter L "matching" the input X; would L make a good suppressor of the process X if X were regarded as a noise process?
- (iv) White noise N with spectral density 1 is passed into the first of a chain of n filters $L_1^n, L_2^n, \ldots, L_n^n$, where for each n the transfer function L_k^n is $(1 + \frac{\alpha 2\pi j f}{\sqrt{n}})^{-1}$, $f \in \mathbb{R}$, $1 \le k \le n$.

Give the spectral density $S_{Z_n}(f)$, $f \in \mathbb{R}$, of the process Z_n emitted at the output of the last filter L_n^n .

(v) Let $n \to \infty$ and give an analytic expression for the spectral density $S_{Z_{\infty}}(f), f \in \mathbb{R}$.

(i)

$$E[Y(t+\tau)X(t)] = E\left[\int_{-\infty}^{\infty} \ell(r).X(t+\tau-r)dr.X(t)\right]$$
$$= \int_{-\infty}^{\infty} \ell(r).E[X(t+\tau-r).X(t)]dr$$
$$= \int_{-\infty}^{\infty} \ell(r).R_X(\tau-r)dr$$

(ii)
$$S_Y(f) = |L(f)|^2 S_X(f)$$

(iii)

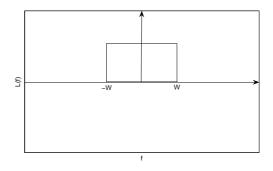


Figure 1: L(f) = 0, $|f| \ge W$

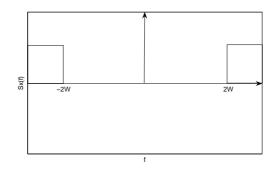


Figure 2: $S_X(f) = 0, |f| \le 2W$

 $S_Y(f) = |L(f)|^2 S_X(f) = 0$. Hence the filter L(f) is a good suppressor of the signal X(t) since it completely filters out all the high frequencies X.

(iv)
$$S_{Z_n} = \left| \left(1 + \frac{j\alpha 2\pi f}{\sqrt{n}} \right) \right|^{2n} .S_X(f)$$

(v)

$$S_{Z_n} = \left| \frac{1}{1 + \frac{j2\alpha\pi f}{\sqrt{n}}} \right|^{2n} .S_X(f)$$

= $\left| \frac{1}{1 + \frac{4\alpha^2\pi^2 f^2}{n}} \right|^n .S_X(f)$
= $\left| 1 + \frac{4\alpha^2\pi^2 f^2}{n} \right|^{-n} .S_X(f)$

Using the fact that $\lim_{n\to\infty}(1+x/n)^n = \exp\{x\}$, it follows that

$$\lim_{n \to \infty} = S_{Z_n} = S_{Z_\infty} = \exp\{-4\alpha^2 \pi^2 f^2\} \cdot S_X(f)$$

10.4 (Radio City Contends with Noise in Signal)

- (i) At Radio City a zero mean scalar wide sense stationary process X with correlation function {e^{-2λ|τ|}, -∞ < τ < ∞}, λ > 0, is passed through a linear system L with impulse response {e^{-μτ}, 0 ≤ τ < ∞}, μ > 0. The output Y is disturbed by a zero mean scalar additive wide sense stationary noise process Z, where Z has correlation function {σ²e^{-2γ|τ|}, -∞ < τ < ∞}, γ > 0, and is independent of Y. What is the spectral density of the resulting transmitted process M = Y + Z?
- (ii) What is the signal to noise power ratio $\gamma_{\sigma^2} = \frac{S_M(f)}{S_Z(f)}, f \in \mathbb{R}$? What happens to γ_{σ^2} as the noise increases, i.e. $\sigma^2 \to \infty$, and decreases, i.e. $\sigma^2 \to 0$.

Question 10.4 Solution

(i) The autocorrelation of Y is given by

$$S_Y(f) = |H_L(f)|^2 S_X(f)$$

where $H_L(f)$ is the frequency response of L.

The autocorrelation of X is

$$R_X(\tau) = e^{-2\lambda|\tau|}$$

so its spectral density is

$$S_X(f) = \int_{-\infty}^{\infty} e^{-2\lambda|\tau|e^{-2\pi jf\tau}} d\tau$$
$$= \int_{-\infty}^{0} e^{2\lambda\tau} e^{-j2\pi f\tau} d\tau + \int_{0}^{\infty} e^{-2\lambda\tau} e^{-j2\pi ft} d\tau$$
$$= \left[\frac{e^{\tau(2\lambda - j2\pi f)}}{2\lambda - j2\pi f}\right]_{-\infty}^{0} + \left[\frac{-e^{\tau(2\lambda + j2\pi f)}}{2\lambda + j2\pi f}\right]_{0}^{\infty}$$
$$= \frac{1}{2\lambda - j2\pi f} + \frac{1}{2\lambda + j2\pi f}$$
$$= \frac{2\lambda + j2\pi f + 2\lambda - j2\pi f}{4\lambda^2 + 4\pi^2 f^2}$$
$$= \frac{\lambda}{\lambda^2 + \pi^2 f^2};$$

the frequency response of L is

$$H_L(f) = \int_0^\infty e^{-\mu\tau} e^{-j2\pi f\tau} d\tau$$
$$= \left[\frac{e^{-\tau(\mu+j2\pi f)}}{\mu+j2\pi f}\right]_0^\infty$$
$$= \frac{1}{\mu+j2\pi f}$$

and its squared magnitude is

$$|H_L(f)|^2 = \frac{1}{\mu^2 + 4\pi^2 f^2}$$

(The above expressions for $S_X(f)$ and $H_L(f)$ could also have been obtained from a table of Fourier transforms, instead of by integration.) Thus

$$S_Y(f) = \frac{1}{(\lambda^2 + \pi^2 f^2) \left(\mu^2 + 4\pi^2 f^2\right)}$$

Since Y and Z are independent,

$$S_M(f) = S_Z(f) + S_Y(f);$$

we have

$$R_Z(f) = e^{-2\gamma|\tau|}$$

$$S_Z(f) = \frac{\gamma}{\gamma^2 + \pi^2 f^2} \qquad (\text{derived similarly to } S_Z(f))$$

and thus

$$S_M(f) = \frac{\lambda}{(\lambda^2 + \pi^2 f^2) (\mu^2 + 4\pi^2 f^2)} + \frac{\gamma}{\gamma^2 + \pi^2 f^2}.$$

(ii)