ECSE 304-305B Assignment $9 \quad$ Winter 2007

Return by noon, Thursday, 5th April
9.1 The general form of the joint probability density function for two Gaussian random variables is

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{\frac{-1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-m_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-m_{1}}{\sigma_{1}}\right)\left(\frac{y-m_{2}}{\sigma_{2}}\right)+\left(\frac{y-m_{2}}{\sigma_{2}}\right)^{2}\right]\right\}
$$

(a) Show that if $\rho=0$, then X and Y are independent.
(b) Suppose $\rho=0$ and $m_{1}=m_{2}=0$. Find $P[\{X>0\} \cup\{Y=0\} \cup\{X>0 \cap\{X Y<0\}]$. Your answer should not involve any integration.
(c) Write the general density $f_{X, Y}(x, y)$ above in the alternative form for a mulitivariable Gaussian density :

$$
p(x, y)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \frac{1}{|R|^{1 / 2}} \exp \left\{-\frac{1}{2}\left[x-m_{1}, y-m_{2}\right] R^{-1}\left[\begin{array}{l}
x-m_{1} \\
y-m_{2}
\end{array}\right]\right\}
$$

where $n=2,(x, y) \in \mathbf{R}^{2}$ and R is a 2×2 matrix with entries $R_{1,1}, R_{1,2}, R_{2,1}, R_{2,2}$.
Find the values of the (scalars) $R_{1,1}, R_{1,2}, R_{2,1}, R_{2,2}$ and show that $(2 \pi)^{\frac{n}{2}}|\operatorname{det} R|^{\frac{1}{2}}=$ $2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}$.
9.2 The bivariate Gaussian random variable $\left[\begin{array}{l}X \\ Y\end{array}\right]$ has the mean and covariance

$$
\mu_{X, Y}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad \Sigma_{X, Y}=\left[\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right]
$$

(i) Give the probability density $f_{X, Y}(x, y),(x, y) \in R^{2}$, of $\left[\begin{array}{c}X \\ Y\end{array}\right]$ with the argument of the exponential written as a scalar function of (x, y).
(ii) Find the correlation coefficient $\rho_{X, Y}$.
(iii) Find the mean $\mu_{U, V}$ and covariance $\Sigma_{U, V}$ of $\left[\begin{array}{c}U \\ V\end{array}\right]$ when

$$
\left[\begin{array}{l}
U \\
V
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]+\left[\begin{array}{r}
2 \\
-1
\end{array}\right]
$$

(iv) Give the correlation coefficient $\rho_{U, V}$.
(v) Give the probability density $f_{U, V}(u, v),(u, v) \in R^{2}$, of $\left[\begin{array}{l}U \\ V\end{array}\right]$ in terms of the values of $\mu_{U, V}$ and $\Sigma_{U, V}$ found in (iii).
9.3 Let the bivariate random variable (Z, W) have the density

$$
\frac{1}{2 \pi} \exp \left\{-\left(\frac{z^{2}-2 z w+2 w^{2}}{2}\right)\right\} \quad(z, w) \in R^{2}
$$

Let (Z, W) be mapped to (X, Y) by the transformation

$$
\left[\begin{array}{c}
X \\
Y
\end{array}\right]=\left[\begin{array}{c}
2 Z-3 W \\
4 W
\end{array}\right]
$$

Give the density $f_{X, Y}(x, y),(x, y) \in R^{2}$, in the form of the density $p(x, y)$ in Question 9.1 above; clearly specify the values of $R, \operatorname{det} R$, and m_{1}, m_{2}, in the notation of that question.

