## 7.1

Consider a sequence of independent random variables $\left\{X_{k} ; 1 \leq k\right\}$ such that $X_{k}$ is uniformly distributed on the interval $[-k, k]$. Define:

$$
Y_{n}=\sum_{k=1}^{n} X_{k}, \quad Z_{n}=\sum_{k=1}^{n}(-1)^{k} X_{k}
$$

Show by the use of characteristic functions that $Y_{n}$ and $Z_{n}$ have identical distributions for all $\{n ; 1 \leq n\}$.

## 7.2

(i) Let the exponentially distributed random variable $X$ with parameter $\lambda>0$ model the waiting time until the random instant at which an event occurs:

$$
P(X \leq t) \quad=\quad 1-e^{-\lambda t} \quad t \in R_{+}
$$

Show that $X$ possesses the memoryless property:

$$
P(X>t+h \mid X>t)=P(X>h) .
$$

This may be interpreted as the waiting process restarting from zero at any given time. [Hence, if the occurrence of an event is exponentially distributed, the fact that one has waited $t$ seconds for it to happen has no influence on the probability whether you will see the event occur in the next $h$ seconds. (This is viewed as bad by someone in an exponential bus queue; one's investment in waiting is of no value.)]
(ii) Give the characteristic function of the exponential waiting time distribution on $[0, \infty)$ with parameter $\lambda>0$.

A traveller at Trudeau International Airport must wait in two queues in series: first, the traveller must wait at the Check-in queue for his or her airline; this has an
exponentially distributed waiting time $T_{\lambda}$, with parameter $\lambda>0$; second, the traveller must wait in a queue in the Security Zone with an exponentially distributed waiting time $T_{\mu}$, with parameter $\mu>0$.

It is assumed that $T_{\lambda}$ and $T_{\mu}$ are independent random variables.
(iii) What is the characteristic function of the total waiting time $T_{\lambda}+T_{\mu}$ ?
(iv) Find the characteristic function of $2 T_{\lambda}$.
(v) By use of characteristic functions, or otherwise, show whether the density of $T_{\lambda}+T_{\mu}$ with $\mu=\lambda$ is the same as that of $2 T_{\lambda}$.
(vi) Find the second moment of $T_{\lambda}+T_{\mu}$.

## 7.3

For a random variable $X$ with a probability density function $f_{X}(\cdot)$, let $Y=g(X)$, and consider the four cases:
(a) $g(x)=-x$, where $X$ is uniformly distributed on $[-1,1]$,
(b) $g(x)=x^{3}$, where $X$ is uniformly distributed on $[1,4]$,
(c) $g(x)=2|x|$, where $X$ has the Gaussian density $f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma}} \exp ^{-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}}$,
(d) $g(x)=-|x+2|$, where $X$ has the Gaussian density $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{1}{2} \frac{(x-1)^{2}}{\sigma^{2}}}$.

Find the formula for the probability density $f_{Y}(\cdot)$ of $Y$ in each case at values of $y$ for which $\frac{d y}{d x}$ exists and $\frac{d y}{d x} \neq 0$.

## 7.4

Assume each of the independent identically distributed scalar random variables $X_{i}, 1 \leq i<\infty$, has mean 0 and variance $\sigma^{2}=4$. For $\alpha>0$, consider the probability of the event:

$$
A=\left\{-\alpha \leq \frac{1}{n} \sum_{i=1}^{n} X_{i} \leq \alpha\right\}
$$

(i) Use the Central Limit Theorem, together with the notation $\Phi(x), x \in R$, for the distribution function of a normally distributed $N(0,1)$ random variable, to give a formula for an approximation to the probability that the average $Z_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ lies in the interval $[-\alpha, \alpha]$.
(ii) Let $\alpha=1$. Use the CLT based formula to find the smallest value of $n$ for which the probability of $A$ is at least: (a) 0.95 and (b) 0.9786 . (You may use the fact that for the Gaussian distribution $\Phi(-x)=1-\Phi(x), x \in R$, and may use any standard Gaussian distribution table; for instance in the course text this is given on page SG 632.)

## 7.5

The random variable $X$ has the Binomial distribution $B\left(N, \frac{1}{2}\right)$, i.e. it is the sum of $N$ independent Bernoulli $\{+1,-1\}$ valued random variables $\left\{Y_{k} ; 1 \leq k \leq N\right\}$ each of which satisfies $P\left(Y_{k}=+1\right)=P\left(Y_{k}=-1\right)=\frac{1}{2}$.
(a) find $E X$,
(b) show whether $E\left(X^{2}\right)$ has the value $N$ or $\frac{1}{2} N$,
(c) check you answer in (b) in the case $N=2$,
(d) use the Chebychev inequality to estimate $P(|X-E X|>N)$.

Hint: The Moment Theorem and the characteristic function $E e^{i X \omega}$ may be used in parts (a) and (b) if you wish.

