Question 6.1

A positive scalar random variable X with a density is such that $E X=\mu<\infty, E X^{2}=\infty$.
(a) Using the Markov or Chebyshev inequalities, estimate $P\left(X^{2} \geq \alpha^{2}\right), \alpha>0$.
(b) Explain why the distribution function $F_{X}(x)=P(X \leq x), x \in \mathbb{R}$ is a continuous function of x.
(c) Show that there exist a real number $\gamma>0$ such that $e^{-\gamma}=P(X \leq \gamma)$
(d) Split an integral representing $E e^{-X}$ at $\gamma>0$, where γ is given in (c), and hence (justifying each step) give a lower bound for $E e^{-X}$ of the form $a e^{-2 \gamma}, a>0$. Determine a value for the positive number a.

Question 6.2

Find (a) the mean value μ, and (b) the variance σ^{2} of an RV X with the Laplace density

$$
f_{X}(x)=\frac{1}{2 b} e^{-2|x-m| / 2 b},
$$

where b and m are real constants, $b>0$ and $-\infty<m<\infty$.
Find the corresponding characteristic function $\Phi_{X}(\omega)$ and verify the values found above for μ, σ^{2} by use of the Moment Theorem.

Question 6.3

(a) The exponential random variable Z has the density $f_{Z}(\cdot)=\left\{5 \mu e^{-5 \mu z}, z \in R_{+}, \mu>0\right\}$. Find the characteristic function $\Phi_{Z}(\omega), \omega \in R$.
(b) Let the random variable W be defined by $W=3\left(Z_{1}\right)-3\left(Z_{2}\right)$, where Z_{1} and Z_{2} are independent identically distributed exponential random variables with parameter λ. Find $\Phi_{W}(\omega), \omega \in R$.
(c) Using the one-to-one relation of characteristic functions and densities and pa rt (b), find the density of W. (Hint: check Question 2.)

Question 6.4

Many people believe that the daily change of price of a company's stock on the stock market is a random variable with mean 0 and variance σ^{2}. That is, if Y_{n} represents the price of the stock on the nth day, then

$$
Y_{n}=Y_{n-1}+X_{n} \quad n \geq 1
$$

where X_{1}, X_{2}, \ldots are independent and identically distributed random variables with mean 0 and variance σ^{2}. Suppose that the stock's price today is 100 . If $\sigma^{2}=1$, what can you say about the probability that the stock's price will exceed 105 after 10 days?

