ECSE 304-305B

Assignment 4

 Winter 2007Return by noon, Thursday, 8 February

Question 4.1 (SG p. 152)

Let X be a random point be selected from the interval 0,3) (i.e. by the EPP, or, equivalently, such that X has a linearly increasing distribution function). What is the probability that $X^{2}-5 X+6>0$?

Question 4.2

For constants a and b, a random variable X has PDF

$$
f_{X}(x)= \begin{cases}a x^{2}+b x & 0 \leq x \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

What conditions on a and b are necessary and sufficient to guarantee that $f_{X}(x)$ is a valid PDF?

Question 4.3

A student is allowed to take a certain test three times and the student's final score will be the maximum of the test score. Thus

$$
\begin{equation*}
\mathbf{X}=\max \left\{\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, \mathbf{X}_{\mathbf{3}}\right\} \tag{1}
\end{equation*}
$$

where $\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, \mathbf{X}_{\mathbf{3}}$ are the three test scores and \mathbf{X} is the final score. Assume the score takes values $x, 0 \leq x \leq 100$, and the results of the tests form an independent set of random variables, each with distribution function $F_{X_{i}}=F(x)=P\left(\mathbf{X}_{\mathbf{i}} \leq x\right), \quad 1 \leq i \leq 3$. Let the distribution function of \mathbf{X} be written as

$$
\begin{equation*}
F_{\mathbf{X}}(x)=\{P(\mathbf{X} \leq x), \quad 0 \leq x \leq 160\} \tag{2}
\end{equation*}
$$

(a) Find which of the following gives $F_{\mathbf{X}}(\cdot)$ and give the derivation:
(i) $F^{1 / 3}\left(x^{3}\right)$,
(ii) $F^{3}(x)$,
(iii) $F\left(x^{3}\right)$
(b) If $F(x)=\left\{0, x<0 ; \frac{x}{160}, 0 \leq x \leq 160 ; 1,160 \leq x\right\}$, and given that any score \mathbf{X}_{i} is uniformly distributed over $[0,160]$, find $F_{\mathbf{X}}(120)=\operatorname{Pr}\{\mathbf{X} \leq 120\}$.

