ECSE 304-305B

Assignment 3
Winter 2007

Return by noon, Thursday, 1 February

Question 3.1

The diagram on the following page gives the abstracted Markov chain representation of a collection of hurricane random walk (HRW) events in the Atlantic and the Gulf of Mexico in 2004.

Assume that with probability 1 on Day 1 a hurricane is generated off the African coast at location A, and that (as shown in the diagram) on Day 2 with probability $\frac{1}{2}$ it arrives at the North Atlantic (NA) location and with probability $\frac{1}{2}$ at the Mid-Atlantic (MA) location.

Further assume that on Days 3, 4 and 5 the hurricane makes the successive Markov random transitions with the transition (i.e. conditional) properties indicated on the diagram. Assume that the $\frac{1}{3}$ probability path from the Central States (CS) location leads to a location North Carolina (NC) which is not displayed. Further assume that with probability 1 a hurricane at NC, SEC (South East Coast) or NA goes to the location A on the next day.
(i) Given that $P(A)=1$, find the conditional probabilities:
(a) $P(C S \mid M A)$, (c) $P(C S \mid A)$, where NF denotes North Florida.

Do this by using the Markov property together with the conditional version of the Total Probability Theorem, namely, $P(A \mid C)=P(A \mid B, C) P(B \mid C)+P\left(A \mid B^{c}, C\right) P\left(B^{c} \mid C\right)$, (two element partition case: $B \cup B^{c}$). Do this at each stage working forwards or backwards in time.
(ii) Given that $P(A)=1$, find the conditional probabilities:
(a) $P(M A \mid C S)$, (b) $P(C A \mid S E C)$.
(iii) Take the 11 component vector $[N C, S E C, C S, N F, C G, F K, S G, C A, M A, N A, A]^{T}$ to denote the state vector of the system. Find the transition matrix of the HRW model. Assume that on Day 1: $P(S G)=\frac{3}{4}, P(C A)=\frac{1}{4}$; then use the transition matrix to find the hurricane probability distribution on Day 3.

Question 3.1

Question 3.2

The communication channel in Figure 1 corresponds to a Markov chain on $S=\{\alpha, \beta\} \times\{\gamma, \delta\} \times$

Figure 1: Markovian Communication Channel
$\{y, n\}$, with the indicated prior and conditional probabilities.
Find: (i) $P(n \mid \alpha)$; (ii) $P(n \mid \beta)$; (iii) $P(\alpha \mid n)$

Question 3.3

A web page search algorithm has two independent stages: at Stage 1, the algorithm makes repeated independent attempts at steps $n=1,2, .$. , to connect with page W_{1}. The probability of success is $p>0$ and of failure $1-p$. Once a success occurs, the algorithm passes to Stage 2, where it makes repeated independent attempts at steps $n=1,2, .$. , to connect with page W_{2}. The probability of success is $q>0$ and of failure $1-q$. The algorithm halts when it connects to page W_{2}.
(a) Find the probability the algorithm halts after making exactly n steps of Stage 1 and then making exactly m steps of Stage 2 .
(b) Find the probability that the algorithm has a success in Stage 1 at any instant over the infinite range $1,2, \ldots$ and then halts after making exactly m steps in Stage 2
(c) Take $p=1 / 2$ and $q=1 / 3$. Find the probability that the algorithm makes an odd number $2 n+1, n=0,1, \ldots$, of steps at Stage 1 and then halts at any unspecified iteration in the infinite range $m=1,2, \ldots$ at Stage 2

Question 3.4

In a physical experiment a particle starts in state S_{1} with probability 1 and then jumps to either state S_{L} or state S_{R} with probability p and $1-p$ respectively. From state S_{L}, it jumps to S_{1}, S_{L}, S_{R}, with probabilities $1-\alpha-\beta, \alpha$ and β respectively; and from state S_{R}, it jumps to S_{1}, S_{L}, S_{R}, with probabilities $1-\alpha^{\prime}-\beta^{\prime}, \alpha^{\prime}$ and β^{\prime} respectively.
(a) Give the transition matrix T for this Markov chain with the probability $p_{L L}$ corresponding to the S_{L} to S_{L} transition in the top left position, and with p_{11} corresponding to the S_{1} to S_{1} transition in the bottom right position.
(b) (i) Assume $\alpha=\frac{1}{2}, \beta=0, \alpha^{\prime}=0, \beta^{\prime}=\frac{1}{2}$, and $p=(1-p)=\frac{1}{2}$. Find the probability that a particle will be found in state S_{L} after two jumps if it starts in state S_{1} with probability 1 . Do this by evaluating $\left(T^{n}\right) p_{0}$ or, equivalently, $T^{n-1}\left(T p_{0}\right)$, for appropriate n and initial probability vector p_{0}.
(ii) Show which of the occupancy probability vectors $\left(p_{L}, p_{R}, p_{1}\right)^{T}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)^{T}$ or $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)^{T}$ is a steady state probability for the Markov chain.

