2.2 Combinatorial analysis

Department of Electrical and Computer Engineering
McGill University, Montréal, CANADA

September 2006

What is combinatorial analysis?

- Part of mathematics dealing with the study and development of systematic methods for counting.
- Find applications in many areas of sciences and engineering: probability and statistics, information theory, data compression, genetics, etc.
- The calculation of probabilities often amounts to counting the number of elements in various sets.
- Combinatorial techniques will be of great help in the solution of these problems.
2.2.1 Basic counting techniques

Generalized counting principle

Definition:

- A r-tuple is an ordered list (or vector) of elements, of the form $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$, or simply $x_{1} x_{2} \ldots x_{r}$
- Two r-tuples are equal ($=$) if and only if each of the corresponding elements are identical.
Theorem 2.4: Let A be a set of r-tuples, $\left\{x_{1} x_{2} \ldots x_{r}\right\}$, such that there are:
- Firstly: n_{1} different ways in which to chose x_{1},
- Secondly: n_{2} different ways in which to chose x_{2},
- ...
- Finally: n_{r} different ways in which to chose x_{r}.

Then A contains $N(A)=n_{1} n_{2} \ldots n_{r}$ different r-tuples.

Note:

- The theorem specifies only the number of possible choices available at each step
- the specific choices in the r th step may depend on previous choices, but not their number n_{r}.

Corollary: Suppose the sets $A_{1}, A_{2}, \ldots, A_{r}$ contain $n_{1}, n_{2}, \ldots, n_{r}$ elements, respectively. Then the product set

$$
\begin{equation*}
A_{1} \times A_{2} \times \ldots \times A_{r}=\left\{\left(a_{1}, a_{2}, \ldots, a_{r}\right): a_{i} \in A_{i}\right\} \tag{1}
\end{equation*}
$$

contains $n_{1} n_{2} \ldots n_{r}$ elements.

Example

- In Quebec, license plate numbers are made up of 3 letters followed by 3 digits, that is $l_{1} l_{2} l_{3} d_{1} d_{2} d_{3}$ where l_{i} is any one of 26 possible letters from a to \mathbf{z}, and d_{i} is any one of the possible digits from 0 to 9 .
- Thus there are, in principle,

$$
\begin{equation*}
26 \times 26 \times 26 \times 10 \times 10 \times 10=26^{3} \times 10^{3}=17,576,000 \tag{2}
\end{equation*}
$$

different license plate numbers.

Number of subsets

Theorem 2.5: A set S containing n elements has 2^{n} different subsets, or equivalently, its power set \mathcal{P}_{S} contains 2^{n} elements.

Proof: ...

Tree diagrams

- Useful when counting principle does not apply directly.
- For example, when the number of ways of selecting a second element depends on the choice made for the first element, and so on.
- Tree diagram provides systematic identification of all possibilities.

Example

- In a certain binary coding scheme, individual pieces of information are represented by specific sequences of 0 s and 1s, called codewords.
- List all possible codewords that terminate upon the occurrence of symbol 0 or a maximum of 3 bits, whatever comes first?

2.2.2 Permutations

Permutations

Definition: An ordered arrangement of r elements taken without replacement from a set A containing n elements ($0<r \leq n$) is called an r-element permutation of A.
The number of such permutations is denoted $P(n, r)$.

- For example, the possible 2-element permutations from $A=\{a, b, c\}$ are: $a b, a c, b a, b c, c a, c b$ The number of these permutations is $P(3,2)=6$.
- Repetitions are not allowed in a permutation (once a has been selected, the remaining choices are b or c).
- A permutation is an ordered arrangement of r elements, i.e. an r-tuple. Thus the order does matter: $a b \neq b a$

Factorial notation

- For any positive integer n, we define

$$
\begin{equation*}
n!=n(n-1)(n-2) \ldots 1 \tag{3}
\end{equation*}
$$

It is also convenient to define $0!=1$.

- Alternatively, factorials may be defined (and computed) recursively as $n!=n(n-1)!$, with initial condition $0!=1$.
- Factorials grow surprisingly fast: $10!=3628800$, $20!\approx 2.4329 \times 10^{18}$, etc.
- For large values of n, may use Stirling's approximation:

$$
\begin{equation*}
n!\approx \sqrt{2 \pi} n^{n+1 / 2} e^{-n} \tag{4}
\end{equation*}
$$

Number of permutations

Theorem 2.6: The number of r-element permutations from a set A containing n elements is given by the product

$$
P(n, r)=n(n-1) \ldots(n-r+1)=\frac{n!}{(n-r)!}
$$

Theorem 2.7: The number of distinguishable permutations of n objects of k different types, where n_{1} are alike, n_{2} are alike, \ldots, n_{k} are alike ($n_{1}+n_{2}+\ldots+n_{k}=n$) is given by

$$
\begin{equation*}
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!} \tag{5}
\end{equation*}
$$

Example

How many different "words" can we form:

- (a) with the 4 letters P H I L?
- (b) with the 6 letters P HILIP?

2.2.3 Combinations

Combinations

Definition: An unordered arrangement of r objects taken without replacement from a set A containing n elements ($0<r \leq n$) is called an r-element combination of A.
The number of such combinations is denoted $C(n, r)$.

- For example, the possible 2-element combinations from $A=\{a, b, c\}$ are: $a b, a c, b c$ The number of such combinations is $C(3,2)=3$.
- As for permutations, repetitions are not allowed.
- However, order does not matter: $a b=b a$
- Conceptually, an r-element combination of A is the same as an r-element subset of A.

Number of combinations

Theorem 2.8: The number of r-element combinations of a set A containing n elements, is given by

$$
\begin{equation*}
C(n, r)=\frac{n!}{(n-r)!r!} \tag{6}
\end{equation*}
$$

Proof: All the r-element permutations of A can be obtained by first selecting an r-element combination and then permuting the r selected elements. Therefore:

$$
C(n, r) \times r!=P(n, r)=\frac{n!}{(n-r)!}
$$

Corollary: A set S containing n elements has $C(n, r)$ different subsets of size r.

Binomial coefficients

Definition: For any integers r and n, with $0 \leq r \leq n$,

$$
\begin{equation*}
\binom{n}{r} \triangleq \frac{n!}{r!(n-r)!}=C(n, r) \tag{7}
\end{equation*}
$$

The expression $\binom{n}{r}$ (read " n choose r ") is also called binomial coefficient.

Theorem 2.9:

$$
\begin{align*}
\binom{n}{0} & =\binom{n}{n}=1 \tag{8}\\
\binom{n}{r} & =\binom{n}{n-r} \tag{9}\\
\binom{n+1}{r} & =\binom{n}{r}+\binom{n}{r-1} \tag{10}
\end{align*}
$$

Example: 6/49 lottery

In a 6/49 lottery, players pick 6 different integers between 1 and 49 , without repetition, the order of the selection being irrelevant. The lottery commission then selects 6 winning numbers in the same manner.

- A player wins the first prize if his/her selection matches the 6 winning numbers.
- The player wins the second prize if exactly 5 of his/her chosen numbers match the winning selection.
How many different winning combinations are there?

2.2.4 Sampling problems

Introduction

- Many counting problems can be viewed as sampling problems, in which objects are selected from a finite set.
- We define four types of sampling problems:

Type	Replacement	Ordering
1	with replacement	with ordering
2	without replacement	with ordering
3	without replacement	without ordering
4	with replacement	without ordering

- In each case, a selection of r objects is made from a set A initially containing n distinct objects.
- We provide a general counting formula for each case.

1. Sampling with replacement and with ordering:

- After selecting an object from A and noting its identity in an ordered list, the object is put back into A.
- The number of distinct ordered lists is $N_{1}(n, r)=n^{r}$

2. Sampling without replacement, with ordering:

- After selecting an object from A and noting its identity in an ordered list, the object is discarded A.
- The number of distinct lists is equal to the number of r-element permutations from the set A :

$$
\begin{equation*}
N_{2}(n, r)=P(n, r)=\frac{n!}{(n-r)!} \tag{11}
\end{equation*}
$$

3. Sampling without replacement, without ordering

- After selecting an object from A and noting its identity in a non-ordered list, the object is discarded.
- The number of distinct lists is equal to the number of r-element combinations from set A :

$$
\begin{equation*}
N_{3}(n, r)=\binom{n}{r}=\frac{n!}{r!(n-r)!} \tag{12}
\end{equation*}
$$

4. With replacement, without ordering

- After selecting an object from A and noting its identity in a non-ordered list, the object is put back in A.
- In order to count the number of possibilities, we need to specify the way in which the observations are recorded.
- The standard approach consists in listing for each object how many times it is selected.
- For example, suppose $n=6$ and $r=5$. A possible observation is then ($3,0,0,1,0,1$), which can also be represented as

$$
x x x|||x|| x
$$

- The number of distinct possible observations (or lists) is equal to the number of distinguishable permutations of $n+r-1$ objects of two different types, of which r are alike (the x 's) and $n-1$ are alike (the |'s).
- Therefore (Theorem 2.7), we have

$$
\begin{equation*}
N_{4}(n, r)=\frac{(n+r-1)!}{r!(n-1)!} \tag{13}
\end{equation*}
$$

Useful expansions

Theorem 2.10 (binomial): For any integer $n \geq 0$,

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}
$$

Theorem 2.11 (multinomial): For any integer $n \geq 0$,

$$
\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{n}=\sum_{n_{1}+n_{2}+\ldots+n_{k}=n} \frac{n!}{n_{1}!n_{2}!\ldots n_{k}!} x_{1}^{n_{1}} x_{2}^{n_{2}} \ldots x_{k}^{n_{k}}
$$

