Class Test 1, 2006

Solutions

Class_test_1_2006_solutions: 1
I. [4] Which of the following quantities is a vector?

A permittivity
B electric flux
(C) polarization

D polarization volume charge density
2. [4] Which of the following does this figure represent?

A the equipotentials of a pair of equal charges
(B) the equipotentials of a pair of opposite charges

C the electric field lines of a pair of equal charges
D the electric field lines of a pair of opposite charges

Rise time of $\begin{aligned} r_{2} & =r \\ & =C R\end{aligned}$ $\begin{aligned} & C= C^{\prime} l \text {, so } r=C^{\prime} R l \\ & \\ & \text { Caparitance } / m\end{aligned}$ $C^{\prime}=\frac{2 \pi \varepsilon}{\ln b / a} \quad C_{\text {new }}^{\prime}=\frac{2 \pi \varepsilon}{\ln b_{\text {neew }} / a}$
Need $C_{\text {new }}^{\prime}=\frac{1}{2} C^{\prime}$ to reduce r by $1 / 2$

$$
\begin{equation*}
\text { ie } \quad \ln \frac{b_{\text {rev }}}{}=2 \ln \frac{b}{a} \Rightarrow \frac{b_{\text {new }}}{a}=\left(\frac{b}{a}\right)^{2}=9 \tag{D}
\end{equation*}
$$

Class_test_1_2006_solutions: 3

$$
\begin{align*}
& \text { 4. } E=G_{R} / R \\
& \underline{P}=\varepsilon_{0} \underline{a}_{R} \\
& \underline{D}=\varepsilon_{0} \underline{E}+\underline{P}=\varepsilon_{0}\left(\frac{1}{R}+1\right) \underline{a}_{R} \\
& \rho=\nabla \cdot \underline{D}_{-}=\frac{1}{R^{2} \partial R}\left(R^{2} D_{R}\right) \quad \text { (spherical coords.) } \\
& =\varepsilon_{0} \frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R+R^{2}\right) \\
& =\frac{(1+2 R)}{R^{2}} \varepsilon_{0} \tag{D}
\end{align*}
$$

$$
\begin{aligned}
& \text { 5. (a) } \begin{aligned}
& \underline{D}=\varepsilon_{0} \underline{E}+\underline{P} \Rightarrow=\underline{D}-\varepsilon_{0} \underline{E} \\
&=\varepsilon \underline{E}-\varepsilon_{0} \underline{E} \\
&=-\left(\varepsilon-\varepsilon_{0}\right) E_{2} \underline{a}_{x} \\
& \text { (b) } P_{p}=-\nabla \cdot \underline{P}=+\nabla \cdot \underbrace{\left(\varepsilon-\varepsilon_{0}\right) E_{2} \underline{a}_{x}}_{\text {uniform }}=0 \\
& \text { At surface } x=0: \quad \rho_{p s}=\underline{P}_{\cdot} \underline{a}_{n} \\
&=\left(-\left(\varepsilon-\varepsilon_{0}\right) E_{2} \underline{a}_{x}\right) \cdot \underline{a}_{x} \\
&=-\left(\varepsilon-\varepsilon_{0}\right) E_{2}
\end{aligned}
\end{aligned}
$$

Class_test_1_2006_solutions: 5
(c) Equivalent systen:

$$
\begin{aligned}
& \text { Free space } \\
& \begin{aligned}
\rho_{s e} & =\rho_{s}+\rho_{p s} \\
& =\rho_{s}-\left(\varepsilon-\varepsilon_{0}\right) E_{2}
\end{aligned}
\end{aligned}
$$

Free space
(d) From equivalest system: $E_{1}=E_{2}=\frac{\rho_{s e}}{2 \varepsilon_{0}}=\frac{\rho_{s}-\left(\varepsilon-\varepsilon_{0}\right) E_{2}}{2 \varepsilon_{0}}$
$\Rightarrow \quad 2 \varepsilon_{0} E_{2}=\rho_{s}-\left(\varepsilon-\varepsilon_{0}\right) E_{2}$

$$
\Rightarrow \quad\left(\varepsilon+\varepsilon_{0}\right) E_{2}=\rho_{s} \Rightarrow E_{1}=E_{2}=\frac{\rho_{s}}{\varepsilon+\varepsilon_{0}}
$$

Class_test_1_2006_solutions: 6

