Class Test 1, 2005

Solutions

Class_test_1_2005_solutions: 1

[4] In general, charge on a conductor under static conditions is distributed:

- uniformly through the volume of the conductor. А
- В non-uniformly through the volume of the conductor. С
 - uniformly over the surface of the conductor.
- (D)non-uniformly over the surface of the conductor.
- 2. [4] The tangential part of the electric flux density is continuous across a surface, S. Which one of the following statements must be true?
 - The surface charge density on S is zero. А
 - В The surface charge density on S is non-zero.
 - ©D The dielectric constant is the same on both sides of S.
 - The dielectric constant is the same on both sides of S and the surface charge density on S is zero.

$$\underline{\underline{E}}_{1t} = \underline{\underline{E}}_{2t}$$

Class_test_1_2005_solutions: 2

Class_test_1_2005_solutions: 3

2

Class_test_1_2005_solutions: 5

Class_test_1_2005_solutions: 6

$$\begin{array}{c} +V_{0} \bigcirc \\ 1 = 1 \times 4^{m} \\ 0 = 1 \times 4^{m} \\ 0 = 1 \times 4^{m} \\ 0 = 1 \times 4^{m} \\ V_{0} = 10^{3} \\ V_{0} =$$

Finally, energy =
$$C V_0^2$$

= 4.155 x10⁻¹² x (10³)²
= 4.155 pJm⁻¹
Class_test_1_2005_solutions: 7