
4-1
NUMBERS IN COMPUTERS

So far, we dealt only with natural numbers 0, 1, 2, ... 
We need techniques to deal with:
negative numbers,
capacity of a number representation,
fractions and real numbers.

x = ∑ bi 2i      for i = 0 to n -1;      n being the number of digits

1011 two  = 11ten

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

MIPS words are 32 bits long, but we continue the discussion
with 16 bits half words. To clarify the notation, the leftmost bit
has the highest number and is called the most significant bit
(MSB). Bit 0 is the least significant bit (LSB).

There are several techniques to represent negative numbers. The
method almost universally used is the two’s complement
representation.



4-2
TWO’s COMPLEMENT REPRESENTATION

Zero is uniquely represented by 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Because an even number of numbers that can be represented
with a fixed number of bits, we have a skewed representation.

0000 0000 0000 0000 = 0ten

0000 0000 0000 0001 = 1 ten

0000 0000 0000 0010 = 2 ten

0000 0000 0000 0011 = 3 ten

...
0111 1111 1111 1110 = +32766 ten

0111 1111 1111 1111 = +32767 ten

1000 0000 0000 0000 = -32768 ten

1000 0000 0000 0001 = -32767 ten

...
1111 1111 1111 1101 = -3 ten

1111 1111 1111 1110 = -2 ten

1111 1111 1111 1111 = -1ten

Properties of the two’s complement representation:

• x + (-x) = 2n (which truncates to zero)
• single zero
• all negative numbers have the MSB equal to 1 (sign bit)

• x = b15 (-2)15 + b14 214+ b13 213 + ... + b0 20



4-3
SHORTCUTS

• To negate a given number. Invert every bit and add 1.

0000 0000 0000 0010 = 2 ten

1111 1111 1111 1101           <- add 1
1111 1111 1111 1110 = -2 ten

0000 0000 0000 0001                  <- add 1
0000 0000 0000 0010 = 2 ten

• Convert to numbers of different size:

                                 0000 0000 0000 0010 = 2 ten  (16 bits)
0000 0000 0000 0000 0000 0000 0000 0010 = 2 ten  (32 bits)

                                 1111 1111 1111 1110 = -2 ten

1111 1111 1111 1111 1111 1111 1111 1110 = -2 ten 

The bit sign is copied to capacity if the new word is longer. The
number is truncated if the new word is shorter.

• Shifting left or right performs multiplication or division by
  powers of two and preserves the sign if zeros are entered on
  the right and the sign bit propagated on the left:

0000 0000 0000 0000 0000 0000 0000 0011 = 3 ten

0000 0000 0000 0000 0000 0000 0000 0110 = 6 ten

1111 1111 1111 1111 1111 1111 1111 1111 = -1 ten
1111 1111 1111 1111 1111 1111 1111 1110 = -2 ten
1111 1111 1111 1111 1111 1111 1111 1100 = -4 ten
1111 1111 1111 1111 1111 1111 1111 1000 = -8 ten



4-4
SIGNED AND UNSIGNED

Signed numbers are not always needed. For example, memory
addresses run from 0 to the largest. In the C language, integers
can be declared to be unsigned.

The result of a comparison will depend on whether the numbers
are assumed to be signed or unsigned. We need a new compare
instruction to account for that. We had:

slt $1, $2, $3
slti $1,$2,100

We add two new instructions:

sltu $1, $2, $3
sltiu $1,$2,100

Example: 

1111 1111 1111 1111 1111 1111 1111 1111

means -1 if signed number, 4,294,967,295 if unsigned.
 
Comparing these two numbers to 1 will yield different results,
whether they are considered to be signed or unsigned.

However, the hardware that performs additions and subtractions
does not depend on whether the numbers are signed or
unsigned, because the subtraction is achieved by negating a
number and then adding. More on that later.



4-5
ADDITION AND SUBTRACTION

0000 0000 0000 0111 = 7 ten
+ 0000 0000 0000 0110 = 6 ten

0000 0000 0000 1101 = 13 ten

Subtraction works the same with the manual method or via the
two’s complement and add.

0000 0000 0000 0111 = 7 ten
+ 1111 1111 1111 1010 = -6 ten

0000 0000 0000 0001 = 1 ten

One problem is that the sum of two numbers (signed or
unsigned) may exceed the capacity of the registers.

0111 1111 1111 1111 = +32767 ten

+ 0000 0000 0000 0010 = +         2 ten
1000 0000 0000 0001 = -32767 ten

Which is obviously wrong. We would need one more bit. The
same thing could occur with two negative numbers.
However, it cannot occur with numbers of opposite signs. 
One method to detect occurrence of overflow is to check the
validity of the sign of the result. Overflow conditions:

Operation A B Result

A + B >= 0 >= 0 >= 0

A + B < 0 < 0 < 0

A - B >= 0 < 0 >= 0

A - B < 0 >= 0 < 0



4-6
ACCOUNTING FOR OVERFLOWS 

When an overflow is detected, it may create an exception, that
is, an abnormal condition. The way the computer handles
exceptions is similar to procedures, with the difference that it is
unplanned (it jumps to a fixed address outside the control of the
user). Later we willl see the hardware needed to handle
exceptions. For now, we introduce new instructions which have
the property of ignoring exceptions.

addu $1, $2, $3
addiu $1, $2, 100
subu $1, $2, $3

What is the connection between unsigned numbers and
overflow? Unsigned numbers can create overflows like the
others but the computer designers chose to ignore them. So
actually addu, addiu and subu do exactly the same operation than
add, addi and sub, but do not cause exceptions.



4-7
LOGICAL OPERATIONS

There is a class of operations to manipulate the bits inside a
word without attributing a special meaning to them. There called
logicals.

First, shifts: bits are moved a number of places left of right.

0000 0000 0000 0000 0000 0000 0000 1010

shifted left eight places yields

0000 0000 0000 0000 0000 1010 0000 0000

Providing for the shift right requires two new instructions:

sll $10, $16, 8 # $10 = ($16 << 8)
srl $10, $16, 8 # $10 = ($16 >> 8)

This explains the necessity for the shamt (shift amount) field in
the R format instruction.

op r s r t r d shamt func t

0 0 1 6 10 8 0

There exist other kinds of shifts. The most important is the shift
right arithmetic which preserves the sign bit (sra) and rotate left
and right (rol, ror). Example of shift right arithmetic:

1111 0000 0000 0000 0000 1010 0000 0000
1111 1111 0000 0000 0000 0000 1010 0000



4-8

Other logical operations have to do with the logical operators,
AND, OR, (NOR, XOR, NOT). Each bit of the result is the result
of a logical operation between each bit of the operands.

Example:

0000 1010 0000 1000 0000 1010 0000 0000
AND 0000 0000 0000 0000 1111 1111 1111 1111

0000 0000 0000 0000 0000 1010 0000 0000

This is often used to apply a mask, which forces all bits to zero
except those set to 1 in the mask.

Similar operation for the OR (to combine portions of a word)

0000 1010 0000 1000 0000 1010 0000 0000
OR 0000 0000 0000 0000 1111 1111 1111 1111

0000 1010 0000 1000 1111 1111 1111 1111

We of course have instructions as well as the “immediate”
versions:

and $1, $2, $3 # $1 = $2 & $3
o r $1, $2, $3 # $1 = $2 | $3
andi $1, $2, 100 # $1 = $2 & 100
ori $1, $2, 100 # $1 = $2 | 100

Note: In addi, the 16 bit constant was signed extended to
preserve the sign. In andi and ori, the 16 bit constant is padded
with leading 0s.



4-9
CONSTRUCTION OF ALU

The Arithmetic and Logic Unit is combinatorial logic block
which carries out the operations specified by instructions. It take
two 32 bit operands and produces a 32 bit result according to
the values of control lines.

1 bit ALU AND/OR

ADDITION: for each bit, the result is found by adding two bits
and the carry from the preceding bit. There are two results: the
sum and the carry, so there are three inputs two outputs.

Inputs Outputs

a b CarryIn CarryOut Sum

0 0 0 0 0 00

0 0 1 0 1 01

0 1 0 0 1 01

0 1 1 1 0 10

1 0 0 0 1 01

1 0 1 1 0 10

1 1 0 1 0 10

1 1 1 1 1 11



4-10
Once simplified: CarryOut = (b . CarryIn) + (a . CarryIn) + (a . b)
           _        _____            _   _____       _  _
Sum = (a . b . CarryIn) + (a . b . CarryIn) + (a . b . CarryIn) + (a . b . CarryIn)
        = (a xor b) xor CarryIn

a

b

Carry In

Sum

Connecting all the blocks together leads to a ripple adder
because the carry may propagate
all the way through.



4-11
SUBTRACTION

First we change the sign of operand
b, and then add 1. It takes an extra
inverter and multiplexor. The unused
CarryIn input of the least significant bit
is used to supply the 1.

COMPARISON

We need a special 1-bit ALU for
the most significant bit so that the
result is 1 if the a - b < 0 and 0
otherwise.



4-12
Here are the 1-bit cells connected together with a zero-result
detector.

ALU and summary of the control
lines:

CONTROL LINES FUNCTION

000 And

001 Or

010 Add

110 Subtract

111 Set- less-than



4-13
CARRY LOOK AHEAD

We need to speed up addition, which finishes only when the
carry has rippled through. In theory we can calculate the values
of any carry using only two gate levels.

c2 = (b1 . c1) + (a1 . c1) + (a1 . b1)
c1 = (b0 . c0) + (a0 . c0) + (a0 . b0)

 so
c2 = (a1 . a0 . b0) + (a1 . a0 . c0) + (a1 . b0 . c0) +

        (b1 . a0 . b0) + (b1 . a0 . c0) + (b1 . b0 . c0) + (a1 . b1)

For a wide adder, the size of the logic block would be enormous.
Carry look ahead is a more economical technique:

gi = ai . bi generates a carry regardless of CarryIn
pi = ai + bi propagates a CarryIn to a CarryOut

We rewrite the carry expression in terms of gi and pi

c1 = g0 + (p0 . c0)
c2 = g1 + (p1 . g0) + (p1 . p0 . c0)
c3 = g2 + (p2 . g1) + (p2 . p1 . g0) + (p2 . p1 . p0 . c0)
c4 = g3 + (p3 . g2) + (p3 . p2 . g1) + (p3 . p2 . p1 . g0) + (p3 . p2 . p1 . p0 . c0)

We see that for n bits, we have n+1 terms and the longest term
has n+1 factors, where in the previous case there was a
geometrical growth.



4-14
For a large adder, it is still not practical.

One idea is to build n-bit adder blocks and to ripple the carry
from block to block. These blocks are often 4-bit adders which
have only one CarryIn and one CarryOut.

One other idea is to pursue the idea further. The propagate
signals can be calculated for 4-bit adder blocks:

P0 = p3   . p2   . p1   . p0
P1 = p7   . p6   . p5   . p4
P2 = p11 . p10 . p9   . p8
P3 = p15 . p14 . p13 . p12

The generate signals will be true if all the bits will generate a
carry from the most significant bit of the group:

G0 = g3  + (p3 . g2)   + (p3 .  p2 .  g1)   + (p3 .  p2 .  p1 .  g0)
G1 = g7  + (p7 . g6)   + (p7 .  p6 .  g5)   + (p7 .  p6 .  p5 .  g4)
G2 = g11+ (p11 . g10) + (p11. p10 . g9)  + (p11. p10 . p9 . g8)
G3 = g15 +(p15 . g14) + (p15. p14. g13) + (p15. p14 . p13 . g12)

Then

C1 = G0 + (P0 . c0)
C2 = G1 + (P1 . G0) + (P1 . P0 . c0)
C3 = G2 + (P2 . G1) + (P2 . P1 . G0) + (P2 . P1 . P0 . c0)
C4 = G3 + (P3 . G2) + (P3 . P2 . G1) + (P3 . P2 . P1 . G0) + (P3 . P2 . P1 . P0 . c0)

as before.



4-15
MULTIPLICATION

               1000 Multiplicand (8)
               1001 Multiplier     (9)
               1000
             0000
           0000
         1000
       01001000 Product         (72)

Place the multiplicand if the multiplier’s digit is 1 or 0 otherwise.
Turn it into hardware by shifting right the multiplier to test the
successive bits and shifting left the multiplicand.



4-16
IMPROVEMENT

Instead of shifting the multiplicand left where it ends up using 64
bits, shift the product right. We only need a 32 bit adder.

Further saving is achieved by combining the multiplier and the
product.



4-17
ALGORITHM

0. Init.
Place Multiplicand in Multiplicand register.
Place Multiplier in lower half of Product register.
Clear upper half of Product register.

1. Test and Update.
If the LSB of Product register is 1, add Multiplicand 
register to upper half of Product register and place result
back in the upper half of Product register.

2. Shift.
Product register shifted right one 1 bit.

3. Count.
If 32nd repetition then done else goto step 1.



4-18
SIGNED MULTIPLICATION

Instead of calculating the sign separately from the signs of the
operands and multiply positive numbers, there is a way to do it
directly.

action (cond) action (cond)
               0010    0010
               0 1 1 0    0110
               0000 shift (0)           0000 shift (00)
             0010 add  (1)         0010 sub  (10)
           0010 add  (1)       0000 shift (11)
         0000 shift (0)     0010 add  (01)
       00001100    00001100

        2 x 6 = 12                                    2 x (-2 + 8) = 12

A string of n 1’s is replaced by 1 followed by n 0’s.  This
corresponds to adding 1 to the multiplier.

This is easily compensated by pre-subtracting the multiplicand at
the beginning of the sequence of 1’s.

Booth’s Algorithm:

000001111000 0111 0

    ^ (“bit number -1” initialized at zero)
00: do nothing.
01: add the multiplicand to the left half of the product.
10: subtract the multiplicand from the left half of the product.
11: do nothing.

Pros: Can skip over strings of 1’s   Cons: Bad for 101010...



4-19

Why does this apply to signed numbers? Call a the multiplier
and b the multiplicand. ai and bi are the bits of these numbers.

(ai-1 - ai) = 0, +1 or -1  (do nothing, add b, subtract b)

The Product can be written:

(a-1-a0) b + (a0-a1) b 21 + (a1-a2) b 22 + ... + (a30-a31) b 231 

b [a-1- a0 + a0 21- a1 21 + a1 22- a2 22 + ... + a30231 - a31 231 ]

but    - ai 2i-1 + ai 2i = ai 2i-1

b [a0 + a1 21 + a2 22 + ... + a31 (-231)] = b a

The same reasoning could be carried out swaping a and b.
The Booth algorithm does nothing but implements the encoding
of two’s complement numbers!



4-20
ALGORITHM

0. Init.
Place Multiplicand in Multiplicand register.
Place Multiplier in lower half of Product register.
Clear upper half of Product register.
Clear b-1 (“bit number -1”).

1. Test and Update. Check LSB and b-1:
00: do nothing.
01: add multiplicand to the left half of product.
10: subtract the multiplicand from the left half of product.
11: do nothing.

2. Shift.
Product register arithmetic shift right one 1 bit into b-1

3. Count.
If 32nd repetition then done else goto step 1.

EXAMPLE

5 (0101)     X -3 (1101) -5  (1011)   X -6  (1010)
              

0000 1101  0 0000 1010  0

subtract 1011 1101  0 nop 0000 1010  0

shift 1101 1110  1 shift 0000 0101  0

add 0010 1110  1 subtract 0101 0101  0

shift 0001 0111  0 shift 0010 1010  1

subtract 1100 0111  0 add 1101 1010  1

shift 1110 0011  1 shift 1110 1101  0

nop 1110 0011  1 subtract 0011 1101  0

shift 1111 0001  1 shift 0001 1110  1



4-21
DIVISION

1001 Quotient
Divisor 1000 |  1001010 Dividend

   1000
10
101
1010
1000
     10 Remainder

1001010 | 1000
1000   1001
       1010
       1000

   10

Hardware (divide-by-zero check not represented):



4-22
ALGORITHM

0. Init.
Place divisor in the left half of the Divisor register.
Place dividend in the Remainder register.
Clear the Quotient register.

1. Attempt to fit divisor in dividend.
Subtract the Divisor register from the Remainder register,
place the result in the Remainder register.

2a. If the result is zero or positive.
Shift Quotient register to the left setting rightmost bit to 1.

2.b If the result is negative strictly.
Restore initial value by adding Divisor register to the
Remainder register leaving the sum there.
Shift Quotient register to the left setting rightmost bit to 0.

3. Shift divisor.
Shift Divisor register to the right.

4. Count.
If 33nd repetition then done else goto step 1.



4-23
IMPROVEMENT

As for the multiplication, only a 32 bit ALU is needed to perform
the successive subtractions.

Finally, we can eliminate the Quotient register by putting the
result in the same register.



4-24
ALGORITHM

0. Init.
Place divisor in the Divisor register.
Place dividend in the Remainder register.

1. Shift.
Shift Remainder register to the left 1 bit.

2 Subtract.
Subtract Divisor register from the upper half of Remainder
register and leave result there.

3a. If the result is zero or positive.
Shift Remainder register left setting righmost bit to 1.

3b. If the result is negative strictly.
Restore initial value by adding Divisor register to the upper
part of the Remainder register leaving the sum there.
Shift Remainder register left setting rightmost bit to 0.

4. Count.
If 32nd repetition then done else goto step 2.

Done. Shift upper part of Remainder register right 1 bit.



4-25
SIGNED DIVISION

There is no simple Booth algorithm equivalent. First record the
sign the divisor and the divident, divide the absolute values, and
negate the sign of quotient if the signs are different.

The remainder as the same sign as the sign of the dividend.

Dividend = Quotient x Divisor + Remainder

    + + + +
    + - - +
    - - + -
    - + - -

INSTRUCTIONS

The same hardware can be used to perform multiplication and
division. Only the control differs. The MIPS machine calls Hi and
Lo the respective halfs of the 64 register used to store the 64 bit
product or the quotient/remainder. Instructions:

mult $2, $3 # Hi,Lo = $2 x $3
multu $2, $3 # same but unsigned (no overflow)
div $2, $3 # Lo = $2 / $3, Hi = $2 mod $3
divu $2, $3 # same but unsigned (no overflow)
mfhi $1 # $1 = Hi
mflo $1 # $1 = Lo

So we add two more registers, Hi and Lo, to the 32 general
purpose registers.



4-26
FLOATING POINT

Real numbers include rationals and irrationals. In either case we
must settle for a fractional approximation. For a rational, the
number of digits needed to represent it may be arbitrarily large.
For an irrational, the number of digits is not finite. 

A normalized number in ordinary scientific notation has just one
non zero digit to the left of the dot.

2.997925 108 m/s is the speed of light.  Same applies to binary:

+- 1.ssssssss 2eeee

Sign Fraction Exponent

1 8 2 3

S E (Exponent) Z (Significand = Fraction - 1)
s eeeeeee sssssssssssssssssssssssssssssssssssssssssssssss

F  = 1 + Z X = (-1)S  F  2E

The bits allocated to E and F trade range against precision. Here,
the range is about from 2.0 10-38 to 2.0 1038. This is by no
means infinite, so overflow and underflow can occur. To offer
greater range and precision computer hardware support double
precision numbers (11 bit exponent and 52 bit fraction on two
words). Many computers use different encodings, but this one
has become the IEEE754  Standard.

In C, a single precision number is a float and a double precision
number is a double.



4-27
PROPERTIES

This representation can share some of its operations with integer
operations.

The sign bit is in the same place so sign test work the same.

Sorting floating point numbers should be the same operation as
sorting fixed point numbers. It would work fine if the exponent
could not be negative. But if we use two’s complement
representation, the scheme breaks down.

The idea is to use a biased  notation to make the most negative
exponent look like the smallest. With an 8 bit exponent, the bias
is to be 127 (1023 for 11 bits):

0000 0000 -127 
0000 0001 -126
...
0111 1110 -1
0111 1111 0
1000 0000 +1
...
1111 1111 128

In general: X = (-1)S  (1 + significand)  2(exponent - bias)



4-28
FLOATING POINT ADDITION

1. Adjust exponent.
Shift the smallest number to the right 
(multiply by powers of 2) until its exponent 
matches the largest.

2. Add significands.

3. Normalize the sum. The result must have the form:
 

+- 1.ssssssss 2eeee

Shift the significand left (resp. right) while decrementing
(resp. incrementing) the exponent.
The biased exponent should be between 0 and 255, 
if it not, cause an exception underflow (resp. overflow).

4. Round. (discussion later) 
If not Normalized, goto step 3.



4-29
HARDWARE TO SUPPORT 

FLOATING POINT ADDITION



4-30
FLOATING POINT MULTIPLICATION

1. Add exponents.
Since they are biased, we would add the bias twice, 
so the result’s biased exponent is:

E1 + E2 - bias.

2. Multiply significands. (unsigned)

3. Normalize Product.
Here normalization will be acheived by shifting right 
and incrementing the exponent.
Check for the exponent and cause an overflow if
capacity exceeded. Note that an underflow can occur if
both operands have large negative exponents.

4. Round. (discussion later) 
If not Normalized, goto step 3.

5. Sign. 
Deternine the sign the product from the signs 
of the operands.

Clearly, there is a lot in common between the hardware for
addition and multiplication (rounding and normalizing).



4-31
FLOATING POINT INSTRUCTIONS

MIPS supports (like many machines) special registers for storing
floating point numbers, named $f0, $f1, ..., $f31.
MIPS supports single and double precision operations and
corresponding loads and stores.

To simplify, only even numbered registers can be used for single
precision operations. The operands are always even numbered,
registers are only used in pairs.

add.s $f2,$f4,$f6 # $f2 = $f4 + $f6
sub.s $f2,$f4,$f6 # $f2 = $f4 - $f6
mul.s $f2,$f4,$f6 # $f2 = $f4 * $f6
div.s $f2,$f4,$f6 # $f2 = $f4 / $f6
add.d $f2,$f4,$f6 # $f2 = $f4 + $f6
sub.d $f2,$f4,$f6 # $f2 = $f4 - $f6
mul.d $f2,$f4,$f6 # $f2 = $f4 * $f6
div.d $f2,$f4,$f6 # $f2 = $f4 / $f6

Loads and stores of single and double precision numbers are all
pseudoinstructions (See Appendix A) involving transfers between
the coprocessor and the CPU.

l.s $f2,Address
s.s $f2,Address
l.d $f2,Address
s.d $f2,Address

bc1t 100 # if (cond ==1) goto PC+4+100
bc0t 100 # if (cond ==0) goto PC+4+100
c.lt.s $f2,$f4 # if ($f2 < $f4) cond = 1 else cond = 0
c.lt.d $f2,$f4 # if ($f2 < $f4) cond = 1 else cond = 0



4-32
ACCURATE ARITHMETIC

The number of reals between, say 0 and 1, is not finite, but the
number of floating point numbers is (there are less than 253 of
them). Rounding (finding the closest approximation) can be done
in several ways.

First, every intermediate result in floating point addition and
multiplication has to be truncated. The IEEE 754 standard
specifies that 2 extra bits (guard  and round ) must be kept
during intermediate calculations.

Here is an example in decimal. Numbers have 3 decimal digits
but we keep two more during calculations.

2.56 100 + 2.34 102

2.3400  102
+ 0.0256  102

2.3656  102

Now we round two digits, 00--49 down and 50--99 up.
Result: 2.37 102

Without the extra digits, the result is: 2.36 102

The accuracy is measured in the number of bits in error in the
LSB’s of the significand (units in the last place, or ulp). The
standard guarantees better than one-half ulp.



4-33
FEATURES OF IEEE 754

Representation of +∞ or -∞ (result of divide by zero instead of
an exception).

Representation of the result of other illicit operations (such as 0/0
or ∞-∞), printed as NaN (Not a Number).

Unnormalized forms. The exponent field is zero but the
significand gains zeros after the dot. There is a gradual
underflow between the smallest normalized number and 0.

Not all hardwares implement those features, but at least they
specify whether they are implemented or not.

The encoding is defined as follows:

Single precision Double precision Object

Exponent Significand Exponent Significand

0 0 0 0 0

0 nonzero o nonzero Denormalized number

1 to 254 anything 1 to 2046 anything Floating point number

255 o 2047 0 In f i n i t y

255 nonzero 2047 nonzero NaN



4-34
CHARACTERS

The most common standard is the ASCII (American Standard
Code for Information Interchange) representation, to associate
numbers to characters.

3 2 20 sp 4 8 30 0 6 4 40 @ 8 0 50 P 9 6 60 ` 1 1 2 70 p

3 3 21 ! 4 9 31 1 6 5 41 A 8 1 51 Q 9 7 61 a 1 1 3 71 q

3 4 22 “ 5 0 32 2 6 6 42 B 8 2 52 R 9 8 62 b 1 1 4 72 r

3 5 23 # 5 1 33 3 6 7 43 C 8 3 53 S 9 9 63 c 1 1 5 73 s

3 6 24 $ 5 2 34 4 6 8 44 D 8 4 54 T 1 0 0 64 d 1 1 6 74 t

3 7 25 % 5 3 35 5 6 9 45 E 8 5 55 U 1 0 1 65 e 1 1 7 75 u

3 8 26 & 5 4 36 6 7 0 46 F 8 6 56 V 1 0 2 66 f 1 1 8 76 v

3 9 27 ‘ 5 5 37 7 7 1 47 G 8 7 57 W 1 0 3 67 g 1 1 9 77 w

4 0 28 ( 5 6 38 8 7 2 48 H 8 8 58 X 1 0 4 68 h 1 2 0 78 x

4 1 29 ) 5 7 39 9 7 3 49 I 8 9 59 Y 1 0 5 69 i 1 2 1 79 y

4 2 2A * 5 8 3A : 7 4 4A J 9 0 5A Z 1 0 6 6A j 1 2 2 7A z

4 3 2B + 5 9 3B ; 7 5 4B K 9 1 5B [ 1 0 7 6B k 1 2 3 7B {

4 4 2C , 6 0 3C < 7 6 4C L 9 2 5C \ 1 0 8 6C l 1 2 4 7C |

4 5 2D - 6 1 3D = 7 7 4D M 9 3 5D ] 1 0 9 6D m 1 2 5 7D }

4 6 2E . 6 2 3E > 7 8 4E N 9 4 5E ^ 1 1 0 6E n 1 2 6 7E ~

4 7 2F / 6 3 3F ? 7 9 4F O 9 5 5F _ 1 1 1 6F o 1 2 7 7F

There are a number of invisible characters such as “escape”,
“carriage return”, etc... including the “control characters”. One
of particular importance is the “null” character which has the
value 0 and which marks the end of a string in C.

4-35



HEXADECIMAL NOTATION

16 digits: 0 1 2 3 4 5 6 7 8 9  A B C D E F. 

Very practical to represent compactly binary numbers:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

  0    1     2    3     4     5     6    7      8    9     A     B    C     D    E     F 

For example:    F      A     0      3     is readily translated into
                    1111 1010 0000 0011  (and vice-versa)


