
MODULE 4

INSTRUCTIONS: LANGUAGE OF THE MACHINE
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ARCHITECTURE MODEL

The basic instruction set of a computer is comprised of
sequences of REGISTER TRANSFERS.

Example: Add A, B, C # A <-- B + C

   

Register B
   

Register C

   

Register A

   

Arithmetic & Logical 
   

Unit

This is the point at which we begin our investigation.
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OPERATIONS

The most common operations are arithmetic instructions.
The MIPS instructions to add two numbers have the form:

add a, b, c # a = b + c
add a, a, d # a = a + d
add  a, a, e # a = a + e

where a, b, c, d, e are where variables are stored. It takes
three instructions to add four variables. 

A segment of C code:

a = b + c; d = a - e;

may be translated into:

add a, b, c # a = b + c
sub d, a, e # d = a - e

This one:

f = (g + h) - (i + j);

into:

add t0, g, h # temp. t0 = g + h
add t1, i, j # temp. t1 = i + j
sub f, t0, t1 # f = t0 - t1
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REGISTER OPERANDS

The CPU has a limited number of locations called registers
to store variables (made of SRAM).  The MIPS CPU has
32 registers noted $0, ..., $31 which each hold 32 bits,
orword s of data (4 bytes).

A computer has a much greater storage called the main
memory, or just memory (made of DRAM), but which is
slower.

The compiler associates the variables of a program to
registers, attempting to store the most commonly used in
so-called register variables.

f = (g + h) - (i + j);

Will be compiled into:

add $8, $17, $18 # temp. $8 = g + h
add $9, $19, $20 # temp. $9 = i + j
sub $16, $8, $9 # f = $8 - $9

where variables are assigned to registers by the compiler.
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MEMORY OPERANDS

Data structures such as arrays are stored in the memory
since only a few elements can fit in the registers at any
moment in time. To access a word in the memory, the CPU
supplies an address.  The memory is really a large single
dimensional array with addresses starting at 0 and up to
capacity.

Take the C statement:

A[i] = h + A[i];

The variable I is called an index (a selector).

The sequence of machine instructions (in assembly code)
could be:

lw $8, Astart($19) # load A[i] into $8
add $8, $18, $8 # add h to $8
sw $8, Astart($19) # store back into A[i]

The address of the data in memory is calculated as the sum
of Astart (address of first element of array) with the
content of register $19 which holds the index i.

Note on addressing: The memory is structured as an array
of bytes (numbered from 0 to 232). Since we load and store
words, the word addresses differ by 4. This method of
addressing has an effect on the index i. It is represented in
register $19 as i x 4.
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SO FAR...

The MIPS computer can be summarized as follows:

STORAGE:

32 registers, $0, ..., $31, Fast locations for word data
230 memory words, numbered 0, 4, ..., 230-1.

INSTRUCTIONS

assembly code meaning type

add $1, $2, $3 $1=$2+$3   operands: 3 registers
sub $1, $2, $3 $1=$2-$3   operands: 3 registers
l w $1, 100($2) $1=Mem[$2+100]   op’nds: 1 reg., 1 mem.
s w $1, 100($2) Mem[$2+100]=$1   op’nds: 1 reg., 1 mem.

We have seen only four instructions and two types of
operands. 

The MIPS CPU includes other types of operands, for
example, there is provision for transferring half-words  (16
bits) of data as well as byte in a single instruction.

The MIPS CPU also includes other operations.

For now, we will live with this simplified view.
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REPRESENTING INSTRUCTIONS

Numbers and machine instructions are both respresented
using binary numbers.  There is no way to tell them apart
other than where they are placed in memory.

For example, a set of 32 bits represents the instruction add
according to the following format:

0 17 18 8 0 32

In binary:

000000 10001 10010 01000 00000 100000

To make it simpler to discuss, we assign  these fields
symbolic names:

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs r t r d shamt funct

The meaning of these fields is conventional.

• op: operation of instruction
• rs: the first register source operand
• rt: the second register source operand
• rd: the register destination operand (result)
• shamt: shift amount (see later)
• funct: function, variant of operation specified in op

7



MIPS INSTRUCTION FORMATS

The load and store instructions require a different format
from instructions operating on registers.

6 bits 5 bits 5 bits 16 bits

op rs r t address

So now, we can complete the translation from a high level
language statement, to assembly code, to machine code:

A[i] = h + A[i];

Assembly code:

lw $8, Astart($19) # load A[i] into $8
add $8, $18, $8 # add h to $8
sw $8, Astart($19) # store back into A[i]

Machine code:

35 19 8 1200

0 18 8 8 0 32
43 19 8 1200

In binary:

100011 10011 01000 0000 0100 1011 0000
000000 10010 01000 01000 0000 100000

101011 10011 01000 0000 0100 1011 0000
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ALTERING CONTROL FLOW

The control flow of a program is altered by the use of
branch and jump instructions.  Let’s consider branches first.

beq $1, $2, Label

This instruction compares the values stored in a pair of
registers, and depending  on equality branches to a location
in memory. This location is specified by Label.

bne $1, $2, Label

“Branch if not equal” branches if the two values are
different.

Consider the following sequence of “C” code:

if (i == j)
f = g - h;

else
f = 0;

In assembly code:

bne $19, $20, Else
sub $16, $17, $18
j Exit

Else: add $16, $0, $0
Exit:
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ALTERING CONTROL FLOW cont.

bne $19, $20, Else
sub $16, $17, $18
j Exit

Else: add $16, $0, $0
Exit:

bne compares i and j stored in $19 and $20.  If i ≠ j, it
branches to Else:

If i = j, the add gets executed and g - h is calculated. 
Assuming these numbers are in $17 and $18, the result is
left in $16.

Following this operation, is a jump instruction j. It diverts
unconditionally the flow of control  to the label Exit:.

Final point, at label Else:, the register $0 is special. It is
hardwired to the value 0.  The net effect of add is to copy
the value 0 to register $16.

Psuedo-instructions  are constructs defined by the
assembler for purposes of clarity.  For example:

move $8, $18 is translated by the assembler into

add $8, $0, $18

Thus, move $16, $0  in the program segment would
correspond to the add statement above.
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LOOPS

Consider the following snippet of “C” code:

while (save[i] == k)
i = i + j;

We now have all that is needed for translation into
assembly code.

Loop: mul $9, $19, $10
lw $8, SaveAddr($9)
bne $8, $21, Exit
add $19, $19, $20
j Loop

For this code to work we have to assume that:

• We have a multiplication instruction (more on that later)
• i is stored in $19
• j is stored in $20
• k is stored in $21
• $10 has the value 4

Later, we will see that this is somewhat awkward, but for
now it serves the purpose.
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slt INSTRUCTION

So far, we have instructions:

• add, sub (three register operands), 
• lw, sw (one register operand, one memory op’nd), 
• bne, beq (two register operands, one branch address).
• j (one branch address)

One technique to provide for statements like if (i < j) is to
introduce one more instruction, “set lower than”:

slt $1,  $16,  $17

Destination register $1 is set to value 1 if the value in $16 
is strictly smaller than that in $17 and set to 0 otherwise.

Pairing slt and bne (or beq) allows the compiler to generate
all six comparison cases (== , != , <= , >= , < , >). For
example:

if (i < j)
a = 0;

will be translated into:

slt $1,  $16,  $17
bne $1, $0, Exit

The other cases should be worked out as an exercise.
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ONE MORE: jr

A jump instruction with the jump address specified in a
register, “jump register”.

j r $1 # Jump can span entire address space.

It is useful for jumping at addresses:
• which result from a calculation (jump table)
• which were previously stored

We now have:
Format

• add, sub (three register operands) R
• lw, sw (one reg. operand, one mem. op’nd) I
• bne, beq (two reg. operands, one branch addr.) I
• slt (three register operands) R
• j (one branch address) J
• j r (one register operand) R

These all fit into just three formats

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R op rs r t r d shamt funct

6 bits 5 bits 5 bits 16 bits

I op rs r t address

6 bits 26 bits

J op address
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PROCEDURES

Procedures (subroutines) allow structuring of programs by
“calling” a code sequence, passing “parameters” (and
“returning” values):

main{}
{

...;
swap(a, 100);
...;

}

swap(int k[], int k)
{ int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

We need an instruction to save the return address. The
“jump-and-link” instruction is like the “jump” instruction:

j a l ProcedureAddress

but  it saves the return address, the next in sequence, in
register $31. The “Program Counter” or PC, (more later),
always holds this address. Its content gets copied into $31.

...
j a l swap # call swap

- - - - > ...

swap:... # enter swap
...

j r $31 # return from swap
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IMMEDIATE OPERANDS

To deal with statements of the form

a = 4; b = c + 1; ++i;

we require a mechanism for incorporating constants as part
of the instruction.  This is referred to as immediate
addressing. 

addi $2, $0, 4 # a = 4
addi $3, $4, 1 # b = c + 1
addi $29, $29, 4 # ++I (assuming I pointer)

slti $8, $18, 10 # $8 = 1 if $18 < 10

Most instructions can incorporate immediate addressing as
part of the source operand, but not the destination (why?).

To fit within the I format, constants are limited to 16 bits.

6 bits 5 bits 5 bits 16 bits

I op rs r t address

Larger constants must be handled in 2 passes, e.g.
load $8 with the constant 0x0007A120:

lui $8, 0x7      # upper half of $8 gets 0111
addi $8, $0, 0xA120     # lower gets 1010 0001 0010 0000

      # (n.b. lui clears lower 16 bits)
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STACKS

A stack is one of the most important data structures in
computer engineering.  Unlike an array, where access to
items is arbitrary, a stack stores and retrieves data in a
given order: last-in-first-out.  

• An item is said to be “pushed” onto a stack (placed
on top) or “popped” off the stack (removed from
top).

• Stacks are maintained using a “stack pointer”, i.e. an
address kept at a fixed location (e.g. register $29).
Assume that the items to be stacked are words.

... here the value of $1 is 10
addi $29, $29, -4

< - - - - - - - - - s w $1, 0($29) # push $1
|
| ... any code sequence changing $1
| ... here the value of $1 is 11
| addi $29, $29, -4
| < - - - - s w $1, 0($29) # push $1
| |
| | ... any code sequence changing $1
| |
| - - - - > lw $1, 0($29) # pop $1
| addi $29, $29, 4
| ... here the value of $1 is back to 11
|
| ... any code sequence changing $1
|
- - - - - - - - - > l w $1, 0($29) # pop $1

addi $29, $29, 4
... here the value of $1 is back to 10
...stack pointer is also back to its original value
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STACKS cont.

As just seen, stacks allow the values of storage locations
(most often registers) to be saved and restored any number
of times, as long as the sequence of pushed and pops is
symmetrical.

A procedure may call another procedure. A stack allows the
succession of return addresses in ($31) to be kept in an
orderly fashion. The most common method is to insert pairs
of push/pop operations around the procedure call.

Example:
...

1000 j a l foo1
1004

9000
8999
8998
8997
8996

In body of first procedure, link
register $31 PUSHED onto stack.
Stack Pointer $29 = 8996

EC
0 3
0 0
0 0

...

foo1: ...
...

2000 addi $29, $29,

9000

Initial state of stack $29 = 9000

- 4
2004 s w $31, 0($29)
2008 j a l foo2
2012 l w $31, 0($29)
2016 addi $29,$29, 4

...
2050 j r $31

foo2: ...

9000

Before returning, the stack is
POPPED by incrementing the
stack pointer.

Each procedure must ensure that 
the stack pointer is correctly
restored before returning.

Stack Pointer $29 = 9000

...
3000 j r $31

This can be done at any level
of nesting.
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STACKS cont.

Other uses for the stack:

1. Parameter passing

In passing parameters, the first few first registers ($4 to $7)
are conventionally used for this. If the capacity of four
registers is not sufficient, the arguments are “pushed” on
the stack before calling the procedure.

2. Saving registers across calls

In the course of a computation, registers contain the values
of variables. These values might be lost when calling a
procedure using the same registers. They need to be
preserved: the stack is used for that.

3. Spill registers

When the compiler runs out of registers, it can either:
- allocate temporary variables on the stack
- or push the values in registers on the stack to make room,
restoring them later.
This process is known as register allocation. How well it is
done is often the hallmark of the quality of a compiler.

4. Provide for temporary storage

foo()
{ array[1000]; /* dynamic variables go on the stack */

...
}
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ADDRESSING IN BRANCHES AND JUMPS

Jump instruction:
j 10000

is assembled into
6 bits 26 bits

J 2 10000

The 26 bit number used to represent the jump address is
indeed very large (67,108,863,  64M). It is sufficient for
most programs.  However

bne $1, $0, Exit

Is assembled into
6 bits 5 bits 5 bits 16 bits

I 5 1 0 Exit

The 16 bit number (65535, 64K) is clearly too small for
today’s standards.

Branch instructions use the PC-relative addressing mode.
The program counter always contains the address of the
next instruction in sequence. The idea is to add the 16 bit
address to the value of the PC to get the target address.
This way, a branch can “reach” within 216 addresses
relative to itself. This is efficient because the greatest
majority of branches occur around if’s and loops which
span a small amount of code.
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SUMMARY OF ADDRESSING MODES

So far we have:

• Register addressing: the operand is a register 
(formats R and I)

• Base addressing  (or displacement addressing): the
operand is a memory location whose address is the
sum of a register and an address (an offset) in the
instruction.
(I format)

• Immediate addressing: the operand is a constant
within the instruction itself.
(I format)

• PC-relative addressing: the branch target address is
the sum of the PC plus an address (an offset) in the
instruction.
(I format)

• Absolute addressing: the jump target address is found
within the instruction itself.
(J format)
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A COMPLETE EXAMPLE

int v[10000];

sort (int v[], int n)
{

int i, j;

for (i = 0; i < n; i = i + 1) {
for (j = i - 1; j >= 0 && v [ j ] > v[ j + 1]; j = j -1) {

swap(v, j);
}

}
}

swap (int v[], int k)
{
 int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}
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Sorting Example

#------------------------------------------------------------
#       Procedure Name:         swap(int v[], int k)
#
#       Description:            Exch. the contents of v[k] 
#                               and v[k+1]
#
#       Register Allocation:    $4:     pointer to v[0]
#                               $5:     k
#                               $2:     base register for
#                                       array accesses
#                               $15:    scratch
#                               $16:    scratch
#------------------------------------------------------------

        .text
        
#------------------------------------------------------------
#       Save context of caller
#------------------------------------------------------------

swap:   addi    $29, $29, -12   # Allocate space on stack
        sw      $2, 0($29)      # Save $2 onto stack
        sw      $15, 4($29)     # Save $15 onto stack
        sw      $16, 8($29)     # Save $16 onto stack

#------------------------------------------------------------
#       Main procedure body
#------------------------------------------------------------

        sll     $2, $5, 2       # Turn index k into array
                                # offset
        add     $2, $4, $2      # + off. to base. $2 points
                                # to v[k].
        lw      $15, 0($2)      # temp1 ($15) = v[k]
        lw      $16, 4($2)      # temp2 ($16) = v[k+1]
        sw      $16, 0($2)      # v[k] <-- v[k+1]
        sw      $15, 4($2)      # v[k+1] <-- v[k]

#------------------------------------------------------------
#       Restore the context of the caller
#------------------------------------------------------------

        lw      $2, 0($29)      # Restore $2
        lw      $15, 4($29)     # Restore $15
        lw      $16, 8($29)     # Restore $16
        addi    $29, $29, 12    # Restore the stack pointer
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Sorting Example: cont.

#------------------------------------------------------------
#       Execute return
#------------------------------------------------------------

        jr      $31             # Return to calling routine

#------------------------------------------------------------
#       Procedure Name:         sort(int v[], int n)
#
#       Description:            Sorts the contents of array
#                               v[] in ascending order using
#                               bubblesort (highly
#                               inefficient!).
#
#       Register Allocation:    $4:        pointer to v[0]
#                               $5:        n
#                               $17:       loop index j
#                               $19:       loop index i
#                               $21-$23:   scratch registers
#                               $31:       linkage register
#------------------------------------------------------------

#------------------------------------------------------------
#       Save context of caller
#
#       n.b.    See note below regarding saving $5 on
#               function call.
#------------------------------------------------------------

sort:   addi    $29, $29, -24   # Space on stack for 6 reg.
        sw      $17, 0($29)     # Save $17 - j loop index
        sw      $19, 4($29)     # Save $19 - i loop index
        sw      $21, 8($29)     # Save $21 - scratch
        sw      $22, 12($29)    # Save $22 - scratch
        sw      $23, 16($29)    # Save $23 - scratch
        sw      $31, 20($29)    # Save $31 - linkage register

#------------------------------------------------------------
#       Main procedure body
#       Set up outer loop:  for (i=0; i<n; i++)
#------------------------------------------------------------

        li      $19, 0          # $19 <-- loop index i, i=0;
for1tst:slt     $21, $19, $5    # i<n ?
        beq     $21, $0, exitol # No, take exit if outer loop
                                # complete (i>=n)
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Sorting Example: cont.

#------------------------------------------------------------
#       Inner loop:  for (j=i-1; j>=0 && v[j]>v[j+1]; j--)
#------------------------------------------------------------

        addi    $17, $19, -1    # $17 <-- loop index j, j=i-1
for2tst:slti    $21, $17, 0     # j<0 ?
        bne     $21, $0, exitil # Yes, exit inner loop
        sll     $21, $17, 2     # Turn j into array offset
        add     $21, $4, $21    # $21 <-- pointer to v[j]
        lw      $22, 0($21)     # $22 <-- v[j]
        lw      $23, 4($21)     # $23 <-- v[j+1]
        slt     $21, $23, $22   # v[j+1] < v[j] ?
        beq     $21, $0, exitil # No, exit inner loop

#------------------------------------------------------------
#       Procedure call swap[v,j];
#
# n.b. $5 is overwritten on function call.  Rather than
# save on stack (time consuming), we save it in a
# temporary register and restore it immediately
#         afterwards.
#------------------------------------------------------------
        
        move    $21, $5         # Need to change $5 for
                                # function call
        move    $5, $17         # $4 <-- ptr v[j]; $5 <-- j
        jal     swap
        move    $5, $21         # Restore $5.

#------------------------------------------------------------
#       Bottom of inner loop
#------------------------------------------------------------
        
        addi    $17, $17, -1    # Decrement loop counter j
        b       for2tst         # Back to top of loop

#------------------------------------------------------------
#       Bottom of outer loop
#------------------------------------------------------------
        
exitil: addi    $19, $19, 1     # Increment loop counter i
        b       for1tst         # Back to top of loop
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Sorting Example: cont.

#------------------------------------------------------------
#       Restore context of the caller
#------------------------------------------------------------

exitol: lw      $17, 0($29)     # Restore $17
        lw      $19, 4($29)     # Restore $19
        lw      $21, 8($29)     # Restore $21
        lw      $22, 12($29)    # Restore $22
        lw      $23, 16($29)    # Restore $23
        lw      $31, 20($29)    # Restore linkage register
        addi    $29, $29, 24    # Restore stack pointer
                
#------------------------------------------------------------
#       Execute return
#------------------------------------------------------------
        
        jr      $31             # Return to calling routine

#------------------------------------------------------------
# Test Program
#
# Test the sorting program on an array of 10 numbers.  Start
# off by printing out the list (demonstration of SPIM's
# built-in system calls), sort it, and print out the sorted
# result.
#------------------------------------------------------------

        .globl  main
        
#------------------------------------------------------------
# Start off by printing a short banner and the unsorted list.
#------------------------------------------------------------
        
main:   la      $16, TstArray   # $16 <-- array to be sorted
        li      $18, 10         # $17 <-- loop counter for
                                # print
        la      $19, String1    # $19 <-- string to be
                                # printed
        move    $4, $19         # Point to the string
        li      $2, 4           # Code for print string
        syscall                 # Header for unsorted array
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Sorting Example: cont.

#------------------------------------------------------------
# Printing loop - use the syscall (1) function to print array
# elements.
#------------------------------------------------------------

main10: lw      $4, 0($16)      # Get current array element
        li      $2, 1           # Code for print integer
        syscall                 # Execute call
        la      $4, crlf        # String for carriage return
                                # + line feed
        li      $2, 4           # Code for print string
        syscall                 # Execute call

   addi    $16, $16, 4     # Point to the next array
                                # element
        addi    $18, $18, -1    # Decrement loop counter
        bne     $18, $0, main10 # Loop until array printed

#------------------------------------------------------------
#       Skip a line between unsorted and sorted output
#------------------------------------------------------------
                
        la      $4, crlf        # String for carriage return
                                # + line feed
        li      $2, 4           # Code for print string
        syscall                 # Execute call

#------------------------------------------------------------
# Next we use the sorting routine to put the array in order.
#------------------------------------------------------------

        la      $4, TstArray    # Set up call to sort
        li      $5, 10          # $4 <-- v[0]; $5 <-- size
        jal     sort
        
#------------------------------------------------------------
# I really should have set up the print code as a function,
# but I'll be lazy and simply cut-and-past the code.
#------------------------------------------------------------

        la      $16, TstArray   # $16 <-- array to be sorted
        li      $18, 10         # $17 <-- loop counter for
                                # print
        la      $19, String2    # $19 <-- string to be
                                # printed
        move    $4, $19         # Point to the string
        li      $2, 4           # Code for print string
        syscall                 # Header for sorted array
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Sorting Example: cont.

main20: lw      $4, 0($16)      # Get current array element
        li      $2, 1           # Code for print integer
        syscall                 # Execute call
        la      $4, crlf        # String for carriage return
                                # + line feed
        li      $2, 4           # Code for print string
        syscall                 # Execute call
        addi    $16, $16, 4     # Point to the next array
                                # element
        addi    $18, $18, -1    # Decrement loop counter
        bne     $18, $0, main20 # Loop until array printed
        
#------------------------------------------------------------
#       Finally we exit by doing the appropriate syscall.
#------------------------------------------------------------

        li      $2, 10          # Get exit code
        syscall                 # And we're out of here

#------------------------------------------------------------
#       All the data goes here (data segment)
#------------------------------------------------------------

        .data

String1: .asciiz "Unsorted array:\n\n"

String2: .asciiz "Sorted array:\n\n"

crlf:    .asciiz "\n"

         .align 2

TstArray: .word 5 299 4 -36 1101 2 25 8000 21 99
        
 

27



Passing Parameters on the Stack

foo (int a, int b, int c);

Could translate into the following assembly code:

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Assume that a, b, c are in $15, $16, $17 respectively
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

addi $29, $29, -12 # Allocate space on stack
s w $17, 0($29) # Convention is to store args
s w $16, 4($29) # in reverse order.
s w $15, 8($29)
j a l foo
addi $29, $29, 12 # Must restore $sp!
etc...

Inside foo arguments could be accessed as follows:

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# $30 = $fp is used as a frame pointer
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

foo: addi $29, $29, -NN # Allocate NN bytes for saving
s w $15, 0($29) # registers used by foo.
etc...

addi $fp, $29, NN # Set $fp to start of args
l w $15, 8($fp) # $15 <-- argument a
l w $16, 4($fp) # $16 <-- argument b
l w $17, 0($fp) # $17 <-- argument c
etc...
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ARRAYS VERSUS POINTERS

clear1(int array[], int size)
{

int i;
for (i = 0; i < size; i = i + 1)

array[i] = 0;
}

move $2,  $0 # i = 0
Loop: sll $14, $2, 2 # $14 = I * 4  (muli $14, $2, 4)

add $3, $4, $14 # $3 = &array[i]
sw $0, 0($3) # array[i]= 0
addi $2, $2, 1 # i = i +1
slt $1, $2, $5 # $1 = (i < size)
bne $1, $0, Loop # if () goto Loop

clear2(int *array, int size)
{

int *p;
for(p = &array[0]; p < &array[size]; p = p + 1)

*p = 0;
}

move $2, $4 # p = &array[0]
sll $14, $5, 2 # $14 = size * 4 (muli $14, $5, 4)
add $3, $4, $14 # $3 = &array[size]

Loop: sw $0, 0($2) # Memory[p] = 0
addi $2, $2, 4 # p = p + 4
slt $1, $2, $3 # $1 = p < &array[size]
bne $1, $0, Loop # if () goto Loop

The pointer version is more efficient (from 6 down to 4
instructions). Lesson: identity of concept between indices
and pointers. Modern compilers take advantage of this.

29



SUMMARY

All constructs found in high level languages:

• expressions with variables and constants;
• control statements: if’s, loops;
• procedures;
• data structures (arrays, stacks, pointers);

can be translated using a small set of machine instructions
which fit in just three formats.

This achievement did not come about overnight, but is the
result of 4 decades of technical evolution.  Most modern
RISC CPU’s have an instruction set which resembles that
of MIPS.  Once this one is understood, the others can be
understood by differences (M88000, SPARC, ALPHA,
I860, RS/6000, HPSpectrum, PowerPC). Some other have
only part of the features of RISC style (Pentium). 
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MIPS Assembly Language (Short Form)
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MIPS Register Allocation Convention
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