
Tutorial 8:
Assembly Language

• Overview of assembler
• Writing an assembly program
• Assembly language instructions
• Demo of debugging

Hierarchy
- Program written in high-level

language

- Compiler converts program to
machine code

- Assembler converts assembly
code to machine code

- Linker combines files from one
project into a single executable
file

- Computer executes the
machine code

Why do we need assemblers?
00100111101111011111111111100000
10101111101111110000000000010100
10101111101001000000000000100000
10101111101001010000000000100100
10101111101000000000000000011000
10101111101000000000000000011100
10001111101011100000000000011100
10001111101110000000000000011000
00000001110011100000000000011001
00100101110010000000000000000001
00101001000000010000000001100101
10101111101010000000000000011100
00000000000000000111100000010010
00000011000011111100100000100001
00010100001000001111111111110111
10101111101110010000000000011000
00111100000001000001000000000000
10001111101001010000000000011000
00001100000100000000000011101100
00100100100001000000010000110000
10001111101111110000000000010100
00100111101111010000000000100000
00000011111000000000000000001000
00000000000000000001000000100001

FIGURE A.2 MIPS machine language code for a routine to compute and print the sum
of the squares of integers between 0 and 100.

(From Patterson & Hennessy)

addiu $29, $29, -32
sw $31, 20($29)
sw $4, 32($29)
sw $5, 36($29)
sw $0, 24($29)
sw $0, 28($29)
lw $14, 28($29)
lw $24, 24($29)
multu $14, $14
addiu $8, $14, 1
slti $1, $8, 101
sw $8, 28($29)
mflo $15
addu $25, $24, $15
bne $1, $0, -9
sw $25, 24($29)
lui $4, 4096
lw $5, 24($29)
jal 1048812
addiu $4, $4, 1072
lw $31, 20($29)
addiu $29, $29, 32
jr $31
move $2, $0

FIGURE A.1.3 The same routine written in assembly language.
(From Patterson & Hennessy)

SPIM

Can download at:

http://www.cs.wisc.edu/~larus/spim.html

Can download documentation at same site,
including Appendix A of textbook, which is
a reference for SPIM

SPIM
• Code starts with the .text directive
• .globl main directive: says "main" is global;

so can be used from other files
• main label

– gives the start of your program
– your main program calls your procedures

• Data starts with .data directive

• # used to comment out rest of line
– comments are very important!
– should comment every line of code, if you want to

understand it later...

Labels

• Can start any line with a label

• The label is then used elsewhere in the
program, where it will contain the memory
address of that line.

• For example, you can use labels to access
data:

Data with Labels
.data

Label1: .word 42, 36 #32-bit quantities

Label2: .byte 12, 7 #8-bit quantities

Label3: .asciiz "hi\n" #NULL-terminated
#ASCII

.align 2 #Align to next 2^n byte

Label4: .word 12 #32-bit quantity

Data with labels (continued)
So, if data segment starts at 0x1000, we get:

Label1: .word 42, 36 #32-bit quantities
Label2: .byte 12, 7 #8-bit quantities

Label1: 0x1000 0x2a
0x1001 0x00
0x1002 0x00
0x1003 0x00
0x1004 0x24
0x1005 0x00
0x1006 0x00
0x1007 0x00

Label2: 0x1008 0x0c
0x1009 0x07

Data with labels (continued)
Label3: .asciiz "hi\n" #NULL-terminated

#ASCII
.align 2 #Align

Label4: .word 12 #32-bit quantity

Label3: 0x100a 0x68
0x100b 0x69
0x100c 0x0a
0x100d 0x00
0x100e (skipped over)
0x100f (skipped over)

Label4: 0x1010 0x0c
0x1011 0x00
0x1012 0x00
0x1013 0x00

Labels with Code

• Use labels in your program for entry points
for procedures, branches, and loops

• For each procedure, first label is usually
name of procedure

• Can then have labels with the procedure
name and a number, counting by 10's

Labels with code - example
count: li $15, 12 #start count at 12
count10: move $4, $15 #move count to $4

li $2, 1 #code for print int
syscall #print count

addi $15, -1 #decrement count
bne $15, $0, count10

#if not zero, keep
#going

count20: jr $31 #done. So, return!

Register Conventions
• R0: zero constant
• R1: “at” reserved for assembler
• R2: “v0” expression evaluation
• R3: “v1” function results
• R4-R7: “a0..a3” arguments
• R8-R15, R24-R25: “t0..t7, t8-t9” temporary registers
• R16-R23: “s0..s7” secure (protected) registers
• R26-R27: “k0-k1” reserved for OS kernel
• R28: “gp” pointer to global area
• R29: “sp” stack pointer
• R30: “fp” frame pointer
• R31: “ra” Return Address

Some I/O Functions (Syscall)

exit10

$4=buffer
$5=length

Read string8

Integer in $2Read int5

(address)$4Print string4

$4Print int1

NotesArgumentsServiceCode

Syscall Print

• Printing something:

– Load information (address for string, value for
integer) into argument register ($4):

• li $4, 42

– Load desired system call code into $2
• li $2, 1

– Execute system call
• syscall

Syscall Read

• Reading Something:
– Load desired system call code into $2

• li $2, 5
– Execute system call

• syscall
– Value is now stored in $2
– Should be moved from there before next

syscall

Syscall Exit

• Exiting
– Load desired system call code into $2

• li $2, 10
– Execute system call

• syscall

Arithmetic and Logic
($8, $9, and $10 could be any register, e.g. $15)

• add $8, $9, $10
– put sum of $9 and $10 into $8

• sub $8, $9, $10
– subtract $10 from $9 and put result in $8

• and $8, $9, $10
– "and" $9 with $10 and put result in $8

• or $8, $9, $10
– "or" $9 with $10 and put result in $8

Arithmetic and Logic
Immediate versions (using a constant, N)
• addi $8, $9, N

– put sum of $9 and N into $8
• subi $8, $9, N

– subtract N from $9 and put result in $8
• andi $8, $9, N

– "and" $9 with N and put result in $8
• ori $8, $9, N

– "or" $9 with N and put result in $8

(Note: N can only have 16 bits max)

Arithmetic and Logic
• sll $8, $9, N

– Set $8 to $9, shifted left by N bits (shift left logical)

• srl $8, $9, N

– Set $8 to $9, shifted right by N bits (shift right logical)

• negu $8, $9

– Set $8 to negative $9 (negate, no overflow)

Some Branch instructions
• b label

– branch to label
• beq $9, $10, label

– If $9 equals $10, branch to label (Branch if equal)
• bne $9, $10, Label

– If $9 and $10 different, branch to label (Branch if not equal)
• blt $9, $10, Label

– Branch if $9 less than $10 (Branch if less than)
• bgt $9, $10, Label

– Branch if $10 greater than $10 (Branch if greater than)

Jump Instructions

Used to jump to a new location
• j label

– Jump to instruction at label
• jal label

– Jump to instruction at label, saving return
address in register $31

• jr Register
– Jump to the address given in register (usually

$31)

Some comparison instructions

• slt $8, $9, $10
– Set $8 to 1 if register $9 is less than $10, and

to 0 otherwise (set if less than)
• sgt $8, $9, $10

– Set $8 to 1 if register $9 is greater than $10,
and to 0 otherwise (set if greater than)

Load/Store
• li $7, N

– Load number N into register $7 (load immediate)
• la $8, Address

– Load memory address into $8 (load address)
• lw $9, 0($8)

– Load 32-bit word at memory address given by register
$8 into register $9 (load word)

• move $7, $9
– Move contents of register $9 into $7

• sw $9, 0($8)
– Store contents of register $9 at the memory location

given by register $8.

Indirect Addressing

• Often used with loads and stores to
memory
– lw $15, 4($sp) loads the word at memory

address $sp + 4 into register $15
– sw $15, 4($sp) loads the word in register $15

into memory address $sp + 4
• Number outside bracket is a constant, and

is added to contents of register inside
bracket to get a memory location

Subroutine Calls

• When your subroutine is called, it needs to
save any registers that it uses (with the
exception of arguments that will be
returned)

• When your subroutine finishes, it must
restore the registers it used

• Registers are stored on the stack

Saving Registers – example
s1: addi $29, $29, -32 # Allocate space on

stack for 8 registers
sw $2, 0($29) # Save $2 onto stack
sw $4, 4($29) # Save $4 onto stack
sw $5, 8($29) # Save $5 onto stack
sw $11, 12($29)# Save $11 onto stack
sw $15, 16($29)# Save $15 onto stack
sw $16, 20($29)# Save $16 onto stack
sw $17, 24($29)# Save $17 onto stack
sw $18, 28($29)# Save $18 onto stack

(subroutine can then use these registers)

Restoring Registers – example
(At the end of the subroutine, must restore the registers!)

lw $2, 0($29) # Load $2 from stack
lw $4, 4($29) # Load $4 from stack
lw $5, 8($29) # Load $5 from stack
lw $11, 12($29)# Load $11 from stack
lw $15, 16($29)# Load $15 from stack
lw $16, 20($29)# Load $16 from stack
lw $17, 24($29)# Load $17 from stack
lw $18, 28($29)# Load $18 from stack
addi $29, $29, 32 # Restore stack pointer

Demo of SPIM

• Edit a simple program, count.s
– use any text editor, e.g. LCC

• Load the program into SPIM
• Run the program
• Simple debugging

