
Introduction to Computer Engineering I (ECSE-221)
Assignment 4: Assembly Language Programming

Available: Nov 3, 2006
Due Date: Nov 17, 2006

Please submit this assignment by 5pm, Nov 17, 2006, on WebCT. Your assignment must
consist of a Microsoft Word document entitled "Assign4-<ID>.doc" which contains the
answers to Q1-Q3, and an assembly language program entitled "Q4-<ID>.s", which
contains the answer to Q4. In these filenames, <ID> should be replaced by your student
ID number; for example, "Assign4-609384123.doc" and "Q4-609384123.s".

Your assembly program must be fully documented: marks will be deducted if your
program does not contain sufficient comments to explain what it is doing.

This assignment will be marked out of 100 points.

Assignments received up to 24 hours late will be penalized by 10%; assignments received
up to 48 hours late will be penalized by 20%, and assignments received more than 48
hours late will not be marked.

Question 1 (10 points)

MIPS' native assembly code only has two branch instructions, beq and bne, and only one
comparison instruction, slt. Using just these three instructions (along with the ori
instruction to set a to 0 or 1), write (by hand) the MIPS assembly language equivalents
for the following "C" code snippets, assuming that a is stored in register $4, and b is
stored in register $5. Remember that in "C", if an expression is true, it evaluates to 1 and
if false, it evaluates to 0.

 a) a = (a < b); (1 point)
 b) a = (a > b); (1 point)
 c) a = (a == b); (2 points)
 d) a = (a != b); (2 points)
 e) a = (a <= b); (2 points)
 f) a = (a >= b); (2 points)

Question 2 (15 points)

For this question, refer to the following MIPS code (see next page):

 .text

 .globl main

foo: lw $17, 0($sp)
 lw $18, 4($sp)
 addi $sp, $sp, 8
 la $15, arr1
 addi $15, $15, 4
 lw $16, 0($15)
 addi $sp, $sp, -8
 sw $17, 0($sp)
 sw $18, 4($sp)
 jr $31

bar: addi $sp, $sp, -4 # Save return address
 sw $31, 0($sp) # by pushing on stack
 la $12, arr1
 addi $12, $12, 8
 lw $13, 0($12)
 addi $12, $12, 4
 lw $14, 0($12)
 addi $sp, $sp, -4
 sw $13, 0($sp)
 addi $sp, $sp, -4
 sw $14, 0($sp)
 jal foo
 lw $14, 0($sp)
 addi $sp, $sp, 4
 lw $13, 0($sp)
 addi $sp, $sp, 4
 lw $31, 0($sp) # Restore return address
 addi $sp, $sp, 4 # by popping from stack
 jr $31

main: la $10, arr1
 lw $11, 0($10)
 addi $sp, $sp, -8
 sw $10, 0($sp)
 sw $11, 4($sp)
 jal bar
 lw $10, 0($sp)
 lw $11, 4($sp)
 addi $sp, $sp, 8
 li $2, 10
 syscall

 .data
arr1: .word 42, 32, 22, 12, 2

Note: This code is just for the purposes of this question; it doesn't do anything useful,
and more to the point, is incorrect since it doesn't fully save and restore the context in the
subroutines. Also, note that $sp refers to register $29, the stack pointer.

a) Assuming the code starts execution at main, write out which registers are pushed to
and popped from the stack, in the order they are pushed and popped. For example,
 push $23 to stack
 push $22 to stack
 pop $8 from stack
 push $25 to stack
 pop $25 from stack

b) Once the code has executed, what are the contents of the following registers:
 $11
 $13
 $14
 $16
 $17
 $18

Question 3 (25 points)

A useful exercise in understanding assembly language and its relation to machine
language is to take a short assembly language program and translate it to machine
language by hand.

The following program, countbits, counts the number of bits set to 1 in register $4 and
returns the result in register $6.

main: li $10, 32 # set up loop counter
 li $6, 0 # clear output sum

main10: andi $12, $11, 1 # test current bit
 beq $12, $0, main20 # skip count if not set
 addi $6, $6, 1 # otherwise increment count

main20: srl $11, $11, 1 # shift input right
 addi $10, $10, -1 # decrement count
 bne $10, $0, main10 # continue until zero
 li $2, 10 # Halt code
 syscall

Translate this program to machine code by hand, explaining for each line how you
worked out the machine instruction.

Although it might be tempting to simply let the SPIM assembler do this, the exercise is
useful way of learning the MIPS instruction formats. Refer to Appendix A of the text for
descriptions of MIPS assembly language instructions and the corresponding machine
codes.

Question 4 (50 points)

The program division.c is available for download as part of this assignment. It is a binary
division program which works for signed integers. It contains a function, div32, which
does the signed division; and a main() program which tests division for several pairs of
numbers. You should download, compile, and run it to see the output.

Now, re-implement the binary division function, div32, in MIPS assembly code,
assuming the following convention for passing arguments:

 Register Argument Mechanism

 $4 dividend pass by value
 $5 divisor pass by value
 $6 quotient pass by value
 $7 remainder pass by value

Although this is not quite the convention used by a “C” compiler (quotient and remainder
are pointers and would otherwise by passed by reference), we will use it here since
argument passing mechanisms have not been dealt with in detail at this point in the
course. In coding your function it is absolutely essential that the context of the calling
program is fully preserved.

Then, re-implement the main() program in MIPS assembly code to test the binary
division function. The SPIM environment includes a number of SYSCALL functions for
printing strings and integers. Test your functions with the same arrays of test cases given.
Your results should be identical.

Your assembly program must be fully documented, as follows:

First, at the start of each procedure (main and div32) you should have a list of all the
registers that you use, and what each is used for. For example, you should have
something like the following at the start of your div32 code (you will have many more
registers, probably allocated differently; this is just to give the idea):

#--
Procedure Name: int div32(long dividend, long divisor,
long quotient, long remainder)

Description: <put description here>

Register Allocation: $4: dividend (changed)
$5: divisor (changed)
...
$10: scratch
...
$17: dividend_sign
$18: divisor_sign
#--

Second, you should have a comment containing the "C" code that you are translating just
before the assembly code implementing that "C" code. You should also have a comment
at the end of every line of the assembly code. Here's an example:

#--
if (dividend < 0) {
dividend_sign = 1;
dividend = -dividend;
}
#--

 slt $10, $4, $0 # Check if dividend less than 0
 beq $10, $0, div20 # If not, skip to next case
 li $17, 1 # dividend_sign = 1
 negu $4, $4 # negate dividend

#--
if (divisor < 0) {
divisor_sign = 1;
divisor = -divisor;
}
#--

div20: slt $10, $5, $0 # Check if divisor less than 0
 beq $10, $0, div30 # If not, skip ahead
 li $18, 1 # divisor_sign = 1
 negu $5, $5 # negate dividend

