Question 1A

$4=a

$5=b

I- a = (a < b);

main:
slt $4, $4, $5

#Sets $4[a]=1 if $4[a] is strictly < than $5[b]

#If the condition a < b false, $4[a] = 0
II- a = (a > b);

main:
slt $4, $5, $4

#Sets $4[a]=1 if $5[b] is strictly < than $4[a]

#Otherwise, $4[a] = 0

III- a = (a ==b);
main:
beq $4, $5, Equal
#Branches to Equal if $4[a] = $5[b]

#otherwise (if a != b) do this

ori $4, $0, 0

#$4[a] = 0

beq $4, $0, Exit
#Skips “Equal” to avoid overwriting a

#Branched here from 3001 if a=b; need to set a = 1
Equal:
ori $4, $0, 1

 Exit:
#Rest of the program

IV- a = (a != b);

Main:
bne $4, $5, NotEqual
#Branches to NotEqual if $4[a] != $5[b]

#Otherwise, meaning a = b, need to reset a = 0

ori $4. $0, 0

#Reset a=0

beq $4, $0, Exit
#Skips next line to avoid overwriting a

#Branched here if a != b. Need to set a = 1

NotEqual:
ori $4, $0, 1

#Sets a = 1

Exit:
#Rest of the program
V- a = (a <=b);
main:
bne $4, $5, NotEqual
#Goes to NotEqual if a != b

#If a =b

ori $4, $0, 1

#Sets a = 1 if a = b

bne $4, $0, Exit
#a = 1, Branch to Exit if a != 0

#Only way to get here is if a != b

NotEqual:
slt $4, $4, $5

#Sets a = 1 if a<b
Exit:
#Rest of the program
VI- a = (a >=b);

Main:
bne $4, $5, NotEqual
#Goes to NotEqual if a != b

#If a=b

ori $4, $0, 1

#Sets a = 1 if a = b

bne $4, $0, 6004
#a = 1; unconditional branch because a != 0

#If a !=b

NotEqual:
slt $4, $5, $4

#Sets a = 0 if b < a
Exit:
#Rest of the program
Question 2 A
This is what goes on in the stack. Further down, for Q2b, I have outlined the affect of the MIPS instructions. The pushes, since they can overwrite each other are coloured. The pops are done in order, from the top of the stack (lower address) to the bottom of it (higher address)

	-4
	Store $11=42
	
	42
	POP $11

	-8
	Store $10=arr[0]
	
	arr[0]
	POP $10

	-12
	Store $31=rtn main
	
	rtn main
	POP $31

	-16
	Store $13=17
	POP $18
	Store $18=22
	POP $13

	-20
	Store $14=12
	POP $17
	Store $17=12
	POP $14

	-24
	
	
	
	

So basically, we

Push $11 to stack,

Push $10 to stack,

Push $31 to stack,

Push $13 to stack,

Push $14 to stack.
Then we

Pop $17 from stack

Pop $18 from stack

Push $18 to stack

Push $17 to stack

Pop $14 from stack

Pop $13 from stack

Pop $31 from stack

Pop $10 from stack

Pop $11 from stack

Then we are back to ground level with an empty stack.

This is basically what happens chronologically in the registers:
	
	$31
	$sp
	$10
	$11
	$12
	$13
	$14
	$15
	$16
	$17
	$18
	$2

	load $10=arr1
	
	0
	arr[0]
	
	
	
	
	
	
	
	
	

	$11=arr1[0]
	
	0
	arr[0]
	42
	
	
	
	
	
	
	
	

	$sp-8
	
	-8
	arr[0]
	42
	
	
	
	
	
	
	
	

	Store $11 @-4
	
	-8
	arr[0]
	42
	
	
	
	
	
	
	
	

	Store $10 @-8
	
	-8
	arr[0]
	42
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Jump to bar
	rt main
	-8
	arr[0]
	42
	
	
	
	
	
	
	
	

	$sp -4
	rt main
	-12
	arr[0]
	42
	
	
	
	
	
	
	
	

	Store $31
	rt main
	-12
	arr[0]
	42
	
	
	
	
	
	
	
	

	$12=adr arr1
	rt main
	-12
	arr[0]
	42
	arr[0]
	
	
	
	
	
	
	

	$12+8
	rt main
	-12
	arr[0]
	42
	arr[2]
	
	
	
	
	
	
	

	lw $13 = arr[2]
	rt main
	-12
	arr[0]
	42
	arr[2]
	22
	
	
	
	
	
	

	$12=arr[+1]
	rt main
	-12
	arr[0]
	42
	arr[3]
	22
	
	
	
	
	
	

	$14= arr[3]
	rt main
	-12
	arr[0]
	42
	arr[3]
	22
	12
	
	
	
	
	

	$sp -4
	rt main
	-16
	arr[0]
	42
	arr[3]
	22
	12
	
	
	
	
	

	Store $13 @-16
	rt main
	-16
	arr[0]
	42
	arr[3]
	22
	12
	
	
	
	
	

	$sp -4
	rt main
	-16
	arr[0]
	42
	arr[3]
	22
	12
	
	
	
	
	

	Store $14 @ -20
	rt main
	-20
	arr[0]
	42
	arr[3]
	22
	12
	
	
	
	
	

	Jal to Foo
	
	
	
	
	
	
	
	
	
	
	
	

	POP $17 Fr-20
	rt bar
	-20
	arr[0]
	42
	arr[3]
	22
	12
	
	
	12
	
	

	POP $18 Fr-16
	rt bar
	-20
	arr[0]
	42
	arr[3]
	22
	12
	
	
	12
	22
	

	$sp +8
	rt bar
	-12
	arr[0]
	42
	arr[3]
	22
	12
	
	
	12
	22
	

	$15=arr[0]
	rt bar
	-12
	arr[0]
	42
	arr[3]
	22
	12
	arr[0]
	
	12
	22
	

	$15=arr[0+1]
	rt bar
	-12
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	
	12
	22
	

	$16=arr[1]
	rt bar
	-12
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	$sp -8
	rt bar
	-20
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	Store $17 @ -20
	rt bar
	-20
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	Store $18 @ -16
	rt bar
	-20
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Jump back to $31
	rt bar
	-20
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	POP $14 Fr-20
	rt bar
	-20
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	Increm sp+4
	rt bar
	-16
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	POP $13 Fr-16
	rt bar
	-16
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	sp+4
	rt bar
	-12
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	POP $31 Fr-12
	rt main
	-12
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	sp+4
	rt main
	-8
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Jump to $31
	rt main
	-8
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	POP $10 Fr-8
	rt main
	-8
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	POP $11 Fr-4
	rt main
	-8
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	sp + 8
	rt main
	0
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	

	set $2=10
	rt main
	0
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	10

	
	
	
	
	
	
	
	
	
	
	
	
	

So at the end of the program,

	rt main
	0
	arr[0]
	42
	arr[3]
	22
	12
	arr[1]
	32
	12
	22
	10

	$31
	$sp
	$10
	$11
	$12
	$13
	$14
	$15
	$16
	$17
	$18
	$2

$11: Contains arr1[0] = 42

$13: Contains arr1[2] = 22

$14: Contains arr1[3] = 12

$16: Contains arr1[1] = 32

$17: Contains arr1[3] = 12

$18: Contains arr1[2] = 22
Q3 : Doing in 2 hours what a computer can do in 0.2 seconds : MIPE-Hex translation
Here is the assembly code translated in machine code, represented in hexedecimal

	Main
	200A 0020

	
	2006 0000

	Main10
	316C 0001

	
	1180 0002

	
	20C6 0001

	Main20
	000b 5842

	
	214A FFFF

	
	1540 FFFB

	
	2002 000A

	
	0000 000C

And this is how I got there.
- (left): translated pseudoinstructions into MIPE

- (Frame on the right): figures out the appropriate format

- (Value10 row):Fill in the blanks with decimal values. Assuming that the PC runs on 16 bit addresses and starts at 0000. We won’t bother converting the addresses to decimal to reconvert them in hex afterwards.
- (Binary): Converted the previous row in binary. Padded the upper bits with zeros to get appropriate
bit allocation. Spaced out the data in 4 bites for easy conversion.

- (hex): Translated the binary MIPE in Hexadecimal, and there is the answer!!!

	Main
	
	MIPEs
	Format
	Allocation and value

	
	
	
	
	
	
	
	
	
	

	
	
	li $10, 32
	Bytes
	6
	5
	5
	16

	
	
	Equivalent
	I
	op
	rs=source
	rt=dest
	Immediate

	
	
	addi $10, $0, 32
	Value(10):
	8
	0
	10
	32

	
	
	
	Binary:
	0010 00
	00 000
	0 1010
	0000 0000 0010 0000

	
	
	
	Result
	200A 0020

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	li, $6, 0
	Bytes (32)
	6
	5
	5
	16

	
	
	Equivalent
	I
	op
	rs=source
	rt=dest
	Immediate

	
	
	addi $6, $0, 0
	Value(10)
	8
	0
	6
	0

	
	
	16 bit Address (in hex)
	Bianry
	0010 00
	00 000
	0 0110
	0000 0000 0000 0000

	
	
	0 0 0 4
	Hex
	2006 0000

	Main10
	
	MIPEs
	Format
	Allocation and value

	
	
	andi, $12, $11, 1
	Bytes (32)
	6
	5
	5
	16

	
	
	
	I
	op
	rs=source
	rt=dest
	Immediate

	
	
	
	Value(10)
	12
	11
	12
	1

	
	
	
	Bianry
	0011 00
	01 011
	0 1100
	0000 0000 0000 0001

	
	
	
	Hex
	316C 0001

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	beq $12, $0, main20
	Bytes (32)
	6
	5
	5
	16

	
	
	
	I
	op
	rs=source
	rt=dest
	Immediate

	
	
	
	Value(10)
	4
	12
	0
	Offset 2 lines = +2

	
	
	
	Bianry
	0001 00
	01 100
	0 0000
	8

	
	
	
	Hex
	1180 0002

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	addi $6, $6, 1
	Bytes (32)
	6
	5
	5
	16

	
	
	
	I
	op
	rs=source
	rt=dest
	Immediate

	
	
	
	Value(10)
	8
	6
	6
	1

	
	
	
	Bianry
	0010 00
	00 110
	0 0110
	0000 0000 0000 0001

	
	
	
	Hex
	20C6 0001

	Main 20
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	srl $11, $11, 1
	Bytes (32)
	6
	5
	5
	5
	5
	6

	
	
	
	R
	op
	rs=src1
	rt=src2
	rd=dest
	shamt
	funct

	
	
	
	Value(10)
	0
	0
	11
	11
	1
	2

	
	
	
	Bianry
	0000 00
	00 000
	0 1 011
	 0101 1
	000 01
	00 0010

	
	
	
	Hex
	000B 5842

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	addi $10, $10, -1
	Bytes (32)
	6
	5
	5
	16

	
	
	
	I
	op
	rs=source
	rt=dest
	Immediate

	
	
	
	Value(10)
	8
	10
	10
	-1

	
	
	
	Bianry
	0010 00
	01 010
	0 1010
	1111 1111 1111 1111

	
	
	
	Hex
	214A FFFF

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	bne $10, $0, main10
	Bytes (32)
	6
	5
	5
	16

	
	
	
	I
	op
	rs=source
	rt=dest
	Immediate

	
	
	
	Value(10)
	5
	10
	0
	Offset: -5 lines FFFB

	
	
	
	Bianry
	0001 01
	01 010
	0 0000
	FFFB

	
	
	
	Hex
	1540 FFFB

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	li $2, 10
	Bytes (32)
	6
	5
	5
	16

	
	
	Equivalent
	I
	op
	rs=source
	rt=dest
	Immediate

	
	
	addi $2, $0, 10
	Value(10)
	8
	0
	2
	10

	
	
	
	Bianry
	0010 00
	00 000
	0 0010
	0000 0000 0000 1010

	
	
	
	Hex
	2002 000A

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	syscall
	Bytes (32)
	6
	20
	6

	
	
	
	Special
	0
	0
	0xC

	
	
	
	Value(10)
	0
	0
	12

	
	
	
	Bianry
	0000 00
	00 0000 0000 0000 0000 00
	00 1100

	
	
	
	Hex
	0000 000C

