
Introduction to Computer Engineering I (ECSE-221) 
Assignment 2 

Available:  Oct 6, 2006 
Due Date:  Oct 20, 2006 

 
Please submit this assignment by 5pm, Oct 20, 2006 on WebCT.  Your assignment must consist 
of all of the Microsoft Word, text, circuit, and timing files as requested for the questions making 
sure to carefully name the files exactly as specified, since marks will be deducted for any 
incorrectly named files.  You must submit 13 files for this assignment, as follows: 
 

Q1.doc Q4.tim 
Q1.tim Q4a.cct 
Q1.cct Q4b.cct 
Assign2.clf Q4c.cct 
Q2b.cct Q4d.cct 
Q2c.cct 
Q3.doc 

Q4e.cct 

 
 This assignment will be marked out of 100 points. 
 
Assignments received up to 24 hours late will be penalized by 10%; assignments received up to 
48 hours late will be penalized by 20%, and assignments received more than 48 hours late will 
not be marked.   
 
 
Q1. (25 points)  Although rarely implemented, binary subtraction can be defined in a manner 
analogous to addition, replacing the carry input and carry output by a borrow input and borrow 
output.  The truth table corresponding to binary subtraction can be defined in terms of the 
following inputs: borrow in, Bin, minuend, A, and subtrahend, B, and outputs: difference, D and 
borrow out, Bout.  It is simple to determine that the truth table is as follows: 
 

Bin A B D Bout 
0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 0 
0 1 1 0 0 
1 0 0 1 1 
1 0 1 0 1 
1 1 0 0 0 
1 1 1 1 1 

 
  
(a) Using your choice of minimization method, determine both the minimal forms, Sum of 

Products and Product of Sums, which correspond to D and Bout respectively. 
 
Write up your answers to question 1 (a) as a Word file, named "Q1.doc".  If you use Karnaugh 
maps, you may scan in your hand-written maps, or create them using a graphics program.  All 
other text must be typed. 
 



(b) Design the implementation for the two functions using whatever form leads to the simplest 
overall circuit (fewest number of switching elements).  In doing so, the forms must be 
converted to its NAND-NAND or NOR-NOR form.  For the case of a tie, you may 
implement either form.  Implement your functions in LogicWorks using the gates in the 
standard library. 

 
Save the circuit resulting from question 1 (b) in LogicWorks, naming it "Q1.cct". 
 
(c) Devise an appropriate simulation to verify that each circuit is implemented correctly (see 

appendix for more instructions on how to create a timing file for the simulation). 
  
Save your timing file from question 1 (c) as a tab-delimited timing file, named "Q1.tim". 
 
 
Q2. (25 points)  In this question you will use the subtractor building block you designed in Q1 to 
construct a 4-bit system.  To make things more interesting, you will also design and implement 
the complete logic from the gate level upwards. 
 
(a) Start off by designing your own version of each of the gates you used from the standard 

library in Q1, using X-Gates (switches).  Since your design is comprised entirely of NAND 
or NOR gates, only 1 gate type will be required.  However you will need at least three 
varieties to account for different numbers of inputs.  As well, you can design a gate with a 
single input as an inverter.  Your design must not contain any passive elements.   

  
 Note:  Since LogicWorks does not have an active(0) type switch, you may fabricate one 

using an X-Gate (active(1) switch) and inverter from the standard library, then encapsulate 
the resulting circuit and use it as a building block in constructing your family of logic gates.   

 
Save your gates in a library called "Assign2.clf". 
 
(b) Repeat Question 1(c), substituting the gates you designed above in part (a).  If all is correct, 

you should get near identical simulation outputs.  Explain any discrepancies between the two 
outputs, using the text tool in Logicworks to write your explanation below your circuit.  
(Hint: consider changes in gate delay time). 

 
Save your circuit in a file called "Q2b.cct". 
 
(c) Encapsulate your circuit from part (b) to create a 1-bit subtractor module with three inputs, 

Bin, A, and B, and two outputs, D, and Bout.  Construct a 4-bit subtractor by assembling four 
of these encapsulated modules together.  Use 2 LogicWorks "Hex Keyboards" to input the 
four bits for the minuend and subtrahend, and a "Hex Display" to show the result.  You can 
also use a binary probe to indicate overflow (i.e. when the most significant bit requires a 
borrow).  Make sure to test your circuit thoroughly. 

 
Save your encapsulated circuit in the library you created for part (a), "Assign2.clf". 
Save your circuit in a file called "Q2c.cct". 
 
 
 



Q3.  (25 points)  A convenient way of representing Boolean functions is by specifying either 
minterms for which the function is true, or maxterms for which it is false. Consider a function 
F(A,B,C,D) which is true for 0011, 0100, 0101, 0110, 1010, 1011, 1100, 1110 and 1111. The 
shorthand notation for this function is: 

F(A,B,C,D) = Σ{3, 4, 5, 6, 10, 11, 12, 14, 15}. 

Similarly, we can also specify F in terms of its maxterms as follows: 

F(A,B,C,D) = Π{0, 1, 2, 7, 8, 9, 13}. 

These representations are referred to as ΣΠ and ΠΣ forms respectively. Now do the following: 
 
(a)  Determine the minimal sum-of-products (ΣΠ) form for F first using the Karnaugh map 

method, and then using algebraic minimization. 
 
(b)  Repeat Part (a), but this time for the minimal product-of-sums form (ΠΣ).  (Hint: the dual 

form will be useful here). 
 
(c)  Prove algebraically that the minimal forms obtained for Parts (a) and (b) correspond to the 

same function. 
 
Write up your answers to question 3 as a Word file, named "Q3.doc".  You may scan in your 
hand-written Karnaugh maps, or create them using a graphics program.  All other text must be 
typed. 
 
 
 
Q4.  (25 points)  In this question, you will implement the function from Q3 in various different 
ways using LogicWorks, using the gates from the LogicWorks libraries (you don't need to create 
your own gates). 
 
(a) Using the appropriate minimal form from Q3, create a circuit corresponding to F using 

NAND-NAND logic.  Create a LogicWorks timing file (see appendix) to demonstrate that 
the truth table is correctly implemented. 

 
Save your circuit in a file called "Q4a.cct". 
Save your timing file as a tab-delimited timing file, named "Q4.tim". 
 
(b) Using the appropriate minimal form from Q3, create a circuit corresponding to F using 

NOR-NOR logic.  Use the timing file from Q4(a) to test that the truth table is correctly 
implemented. 

 
Save your circuit in a file called "Q4b.cct". 
  
(c) Implement a circuit corresponding to F using a PROM.  Use the timing file from Q4(a) to 

test that the truth table is correctly implemented. 
 
Save your PROM in the library you created for part (a), "Assign2.clf".   
Save your circuit in a file called "Q4c.cct". 
 



(d) Use two 8-bit multiplexers to create a 16-bit multiplexer.  Implement a circuit corresponding 
to F using this 16-bit multiplexer.  Use the timing file from Q4(a) to test that the truth table 
is correctly implemented. 

 
Save your circuit in a file called "Q4d.cct". 
 
(e) Although it is straightforward to implement any Boolean function using a multiplexer with 

2n inputs (where n is the number of variables in the function), the same can actually be 
accomplished using half the inputs, i.e., 2n−1. The trick is to use one of the variables (along 
with its complement) as inputs to the multiplexer (in addition to constant 1’s and 0’s). 
Repeat Part (d) using a single 8-input multiplexer. Use the same simulation to show that 
identical outputs are obtained. 

 
Save your circuit in a file called "Q4e.cct". 
 



Assignment 2  
Appendix 

Using LogicWorks to test Combinational Logic. 
 
Consider the following truth table which corresponds to the carry output (Co) of a 1-bit full 
adder: 
 

Ci Ai Bi Co 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 
Using the methods discussed in Module 2, the following circuit is obtained: 
 

 

 
 
 
One easy way to test this circuit would be to sequentially apply each of the truth table inputs and 
verify if the output of the circuit matches that of the table.  LogicWorks has such a provision 
called a Timing File.  The easiest way to explain it is to show what the corresponding file is for 
the above example. 



 
Timing file for the Full Adder Carry   
     

$T $D $I Ci $I Ai $I Bi 
     

0 100 0 0 0 
100 100 0 0 1 
200 100 0 1 0 
300 100 0 1 1 
400 100 1 0 0 
500 100 1 0 1 
600 100 1 1 0 
700 100 1 1 1 
800 100 0 0 0 
900 100 0 0 1 

1000 100 0 1 0 
1100 100 0 1 1 
1200 100 1 0 0 
1300 100 1 0 1 
1400 100 1 1 0 
1500 100 1 1 1 
1600 100 0 0 0 
1700 100 0 0 1 
1800 100 0 1 0 
1900 100 0 1 1 

 
The table looks just like a spreadsheet (in fact it was created using Excel).  The leftmost column, 
with the header $T, represents units of time in the LogicWorks simulation.  At each time unit, the 
simulator updates the values of all nodes in the circuit.  The timing file specifies the time values 
when the inputs change and their respective values.  An input is defined with $I followed by the 
name of the signal, e.g., $I Ci, $I Ai, and $I Bi, for this example.  Reading the first two rows of 
the table, at T=0 inputs Ci, Ai, and Bi are set to 0, 0, and 0 respectively.  At T=100, inputs Ci and 
Ai are held steady while input Bi is changed from 0 to 1,  Notice how the timing table has a direct 
correspondence to the truth table for the circuit. 
 
The above example specifies event changes in absolute time units, e.g, at T=1300 input Bi 
changes from 0 to 1, while inputs Ci and Ai are held steady at 1 and 0 respectively.  Another way 
of specifying when things happen is to use the $D column to specify the interval between the last 
time step and the current time (i.e. the Delay).  In the example above, each time step corresponds 
to a delay of 100 time units.  It is not necessary to specify both $T and $D, they may be used 
independently or in combination. 
 
A good way to create timing files is to use a spreadsheet program such as Quattro or Excel.  
Unfortunately LogicWorks cannot read spreadsheets directly, but it does know how to read tab 
delimited text.  Most spreadsheets can output their data in this form.   In general, a circuit can 
have any number of inputs, so the number of columns will correspond to the number of truth table 
inputs + 2. 
 



The procedure for testing is as follows.   Once your circuit is created in LogicWorks, label each 
input with a name corresponding to the column headings in your timing file.  Make sure that you 
label the output of your circuit as well so that it is correctly recorded by the simulator (this will all 
be discussed in detail in the tutorial).  All you need to do is use the file dialog to open the timing 
file.  The simulator will then read in the file, and determine the outputs corresponding to your 
inputs as shown below. 
 

 
 
Notice the correspondence to the truth table.  Moving from left to right, one cycles through the 
truth table twice.  It’s fairly easy to check the output Co against the truth table, at least for small 
numbers of variables (which will be the case in this course).  For circuits with many variables, 
e.g., the 4-bit subtractor in Q2(c), it becomes difficult to cycle through all possible input 
combinations.  In such cases one normally chooses a subset of the full truth table, one that is 
sufficient to exercise the functionality of the circuit. 
 
LogicWorks is installed in all of the Engineering computer facilities. 
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