
Tutorial 11

Part 1. Passing arguments on the stack

For Assignment 5, you will pass arguments on the stack using the same convention that
the "C" compiler uses. This is useful to know to be able to call assembly functions from
"C" programs (but we won't be doing that in this course).

Arguments will be passed using the stack. The assignment specifies that the stack should
be set up in the following way before the mult32 procedure is called:

 $sp

0 multiplicand

4 multiplier

8 &productH

12 &productL

How is this done?

1) Allocate memory for productH and productL:

 .data
 prodH: .word 0
 prodL: .word 0

2) Now, assuming that multiplicand is in $4 and multiplier in $5, can setup stack in
function call (this is done in main):

 la $6, prodH
 la $7, prodL
 addi $sp, $sp, -16
 sw $4, 0($sp)
 sw $5, 4($sp)
 sw $6, 8($sp)
 sw $7, 12($sp)

 jal mult32

 addi $sp, $sp, -16

3) Then, in the mult32 procedure, can get the arguments from the stack - but have to do
this *after* we save the context, as follows:

 mult32: addi $sp, $sp, -36 # save context
 sw $18, 0($sp)
 .
 .
 .
 sw $fp, 32($sp)

 addi $fp, $sp, 36 # fp points to arguments

 lw $18, 0($fp) # Get multiplier
 lw $19, 4($fp) # Get multiplicand

4) Then, still in mult32, once we've computed the product, we can put it directly into
memory by getting the memory addressed off of the stack. So, the following will appear
at the end of mult32, assuming that prodH is computed and stored in $20, and prodL is
computed and stored in $21:

 lw $23, 8($fp) # Get address for prodH
 sw $21, 0($23) # Store prodH in memory
 lw $23, 12($fp) # Get address for prodL
 sw $21, 0($23) # Store prodL in memory

5) Finally, need to restore context at very end of mult32:

 lw $18, 0($sp)
 .
 .
 .
 lw $fp, 32($sp)
 addi $sp, $sp, 36

Part 2. Division

Division Datapath

Division Algorithm

0. Init.
 Place divisor in the Divisor register.
 Place dividend in the Remainder register.

1. Shift.
 Shift Remainder register to the left 1 bit.

2 Subtract.
 Subtract Divisor register from the upper half of

Remainder register and leave result there.

3a. If the result is zero or positive.
 Shift Remainder register left setting righmost bit to 1.

3b. If the result is negative strictly.
 Restore initial value by adding Divisor register to the

upper part of the Remainder register leaving the sum
there. Shift Remainder register left setting rightmost
bit to 0.

4. Count.
 If 32nd repetition then done else goto step 2.

Done. Shift upper part of Remainder register right 1 bit.

Non-Restoring Division

The division algorithm above is inefficient because it can involve both an addition and a
subtraction each iteration. NRD is designed to do division more efficiently by only doing
one addition or subtraction each iteration.

In regular division, if subtracting the divisor from the remainder results in a negative
number, the usual practice is to add back the divisor and shift the remainder register left.
Then, on the next iteration, we subtract the divisor again. Combining these steps, and
remembering that multiplying by two is equivalent to shifting left, the result of all these
operations is:

 (remainder + divisor) x 2 – divisor

multiplying it out we get:

 2 x remainder + 2 x divisor – divisor

which gives:

 2 x remainder + divisor

So, we can skip the adding back (restore) step if we simply add instead of subtract on the
NEXT iteration.

Non-Restoring Division Algorithm

0. Init.
 Place divisor in the Divisor register.
 Place dividend in the Remainder register.
 Set Sign to 0.

1. Shift.
 Shift Remainder register to the left 1 bit.

2a. If Sign = 0:
 Subtract Divisor register from the upper half of

Remainder register and leave result there.

2b. If Sign = 1:
 Add Divisor register to the upper half of Remainder

register and leave result there.

3a. If the result is zero or positive.
 Shift Remainder register left setting righmost bit to 1.
 Set sign to 0.

3b. If the result is negative strictly.
 Shift Remainder register left setting rightmost bit to 0.
 Set sign to 1.

4. Count.
 If 32nd repetition then done else goto step 2.

Done. Shift upper part of Remainder register right 1 bit.

Non-Restoring Division Example Program

See div32nrd.s in the Resources section of WebCT.

This example program is useful for the assignment since it has examples of:
 - doing a 64-bit shift (using two 32-bit registers)
 - passing arguments using the stack
 - correctly saving and restoring context

However, it is also more complicated than the program you'll be writing since:
 - it has to deal with signed numbers, but you don't need to worry about signs

(you're doing unsigned multiplication)
 - it does I/O on the console (you're iterating through a table of inputs)

