Tutorial 5

Part 1
(From Tutorial 4)

Truth Table for Full Adder:

Cout

== N Y
— o, O~ O~ oW

—t = O = OO

Implementation of Full Adder:

— OO, O~ = O W

Testing Full Adder:

Test using a timing file (tab delimited, with column labeled $T (time) $D (delay) and $1
(input) - make sure to use the same names for inputs as the labels you used on the wires
in your circuit:

$T $D $I Cin $
0 100 0
100
100
100
100
100
100
100

>
&
(o8]

PR RPRRPROOO
PP OOR R OO
POROROR O

Simulation->Import Timing...,
Fles of type: All Files
Navigate to your timing file.

200 400 600 00 | 1000

Now, look at Cout and S
- they are the same as Cout (0001011 1)andS(0110100 1) from the
original truth table
- so the circuit works properly.

Part 2
From Tutorial 4...
Karnaugh Maps for functions with four inputs

Given a function:
F=Y1{0,2,3,5,7,8,10}

Create a truth table:

A B C D F
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
Karnaugh maps and minimizations:
Sum of Products:
CD

00 01 11 10
00 |_1) 0 P)LL

AB 01| O 0
11 0 0
10)(117 0 0 (—IQ

F=BD+ABD+ACD

Product of Sums:

A) NOR-NOR Logic:

CD
|00 01 11 10
00| 1 (0J 1
AB 010\ L _1 [0
11 [0 0
101 () 1

F=(B+D)A+D)B+C+D)

Implementing the Function from Part 2

Part 3

Notice how labeling the wires simplifies the circuit:

Create a timing file:

$T
0

ik

$D
100
100
100
100
100
100
100
100
100
100
100
100
100
100

I =

Do o T o

i
>

P RPRPPPPOOOOCOOOO

Jom Y= oom

&
o8]

PRPOOOOFRRFRPRPFPFPLPOOOOT

=

i
@)

OCOoOPFrRPPFPOORFRPPFPOORFRPFR OO

poid
O

POPFRPOFRPOPFRPOFRLOPFROLPRFrO

100 1 1 1 0
100 1 1 1 1
100 0 0 0 0
100 0 0 0 1
100 0 0 1 0
100 0 0 1 1
100 0 1 0 0
100 0 1 0 1
100 0 1 1 0
100 0 1 1 1
100 1 0 0 0
100 1 0 0 1
100 1 0 1 0
100 1 0 1 1
100 1 1 0 0
100 1 1 0 1
100 1 1 1 0
100 1 1 1 1

Import the timing file, this is the result:

MmO o m

We could directly check F against the truth table - but it is hard to be sure it is correct
since there are now 16 cases to check.

An easier way is to create a circuit that can test F against the expected value of F, F_e:

A

s

B

—

Fl e DSUEEESS

Add a column to the timing file, F e, which gives the expected value of F:

$D $IA $IB $IC $ID $IF_e

$T

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

Now, run the circuit with the new timing file. This is the result:

By looking at the Success line, we can see that the circuit always works.

B) MUX-16:

Can implement any circuit with n inputs using a multiplexer with 2" lines, with each line
connected to 0 or 1 according to the truth table. So, for this circuit, we will need an

MUX-16. Since logicworks doesn't have

one, you can make one using two MUX-8's

(you don't need to encapsulate it, but so as not to give everything away I've encapsulated

one for the purposes of the tutorial):

+54

e MUX-16
BN

A—53
B— 52
-—51
bO—s0

D14&
014
013
—— D12
011 0
oo

(L]
o7

D3
4
D3
D2
Y
]y

F
_Dﬁuccess
F e

Here's the resulting timing file: it works!

C) MUX-8:

Note that the truth table can be grouped into twos, as follows:

A B c|DI|F
o o0 ool 1 .
o o ofl1]lo P
0o o 1 |o[1 |
o o 1| 1|1

o 1 o lolo

o 1 o1 |1 P
o 1 1]o/lo

o 1 1|11 P
T o0 oo .
1 o ofl1]lo P
o0 1 o1 .
1 o 1]l1]o0o P
T o oo
11 ol1]o

1 1 lolo

11 11]lo ©

So, could use an MUX-8 with A, B, and C as the select lines, and then connect 0, 1, D, or
D' for each combination of A, B, and C.

D) PROM:

Use the PROM wizard to create a PROM with 4 address lines, and 1 bit output:

FPROM

Px—llnE
B—In2
C |In1 Dt

F
|
O—Ina
F_E__D—Euccess

Here's the contents of the PROM:

OFrOoOPRr
OOrOo
OFrOoOPRr
OORrPk

And here's the resulting timing file:

"o omE &

It works!

