Tutorial 5

Part 1
(From Tutorial 4)

Truth Table for Full Adder:
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Implementation of Full Adder:
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Testing Full Adder:

Test using a timing file (tab delimited, with column labeled $T (time) $D (delay) and $1
(input) - make sure to use the same names for inputs as the labels you used on the wires
in your circuit:
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Simulation->Import Timing...,
Fles of type: All Files
Navigate to your timing file.

200 400 600 00 | 1000

Now, look at Cout and S
- they are the same as Cout (0001011 1)andS(0110100 1) from the
original truth table
- so the circuit works properly.



Part 2
From Tutorial 4...
Karnaugh Maps for functions with four inputs

Given a function:
F=Y1{0,2,3,5,7,8,10}

Create a truth table:

A B C D F
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
Karnaugh maps and minimizations:
Sum of Products:
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F=BD+ABD+ACD




Product of Sums:

A) NOR-NOR Logic:
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F=(B+D)A+D)B+C+D)

Implementing the Function from Part 2

Part 3

Notice how labeling the wires simplifies the circuit:

Create a timing file:
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100 1 1 1 0
100 1 1 1 1
100 0 0 0 0
100 0 0 0 1
100 0 0 1 0
100 0 0 1 1
100 0 1 0 0
100 0 1 0 1
100 0 1 1 0
100 0 1 1 1
100 1 0 0 0
100 1 0 0 1
100 1 0 1 0
100 1 0 1 1
100 1 1 0 0
100 1 1 0 1
100 1 1 1 0
100 1 1 1 1

Import the timing file, this is the result:
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We could directly check F against the truth table - but it is hard to be sure it is correct
since there are now 16 cases to check.



An easier way is to create a circuit that can test F against the expected value of F, F_e:
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Add a column to the timing file, F e, which gives the expected value of F:

$D $IA $IB $IC $ID $IF_e
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Now, run the circuit with the new timing file. This is the result:

By looking at the Success line, we can see that the circuit always works.

B) MUX-16:

Can implement any circuit with n inputs using a multiplexer with 2" lines, with each line
connected to 0 or 1 according to the truth table. So, for this circuit, we will need an

MUX-16. Since logicworks doesn't have

one, you can make one using two MUX-8's

(you don't need to encapsulate it, but so as not to give everything away I've encapsulated

one for the purposes of the tutorial):
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Here's the resulting timing file: it works!

C) MUX-8:

Note that the truth table can be grouped into twos, as follows:
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So, could use an MUX-8 with A, B, and C as the select lines, and then connect 0, 1, D, or
D' for each combination of A, B, and C.

D) PROM:

Use the PROM wizard to create a PROM with 4 address lines, and 1 bit output:
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Here's the contents of the PROM:
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And here's the resulting timing file:
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It works!



