
Tutorial 5 
 

Part 1 
(From Tutorial 4) 

 
Truth Table for Full Adder: 
 

Cin A B Cout S 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

 
 
Implementation of Full Adder: 
 

 
 
 



Testing Full Adder: 
 
Test using a timing file (tab delimited, with column labeled $T (time) $D (delay) and $I 
(input) - make sure to use the same names for inputs as the labels you used on the wires 
in your circuit: 
 

$T $D $I Cin $I A $I B 
0 100 0 0 0 
 100 0 0 1 
 100 0 1 0 
 100 0 1 1 
 100 1 0 0 
 100 1 0 1 
 100 1 1 0 
 100 1 1 1 

     
 
Simulation->Import Timing...,  
 Fles of type:  All Files 
 Navigate to your timing file. 
 

 
  
Now, look at Cout and S  
 - they are the same as Cout (0 0 0 1 0 1 1 1) and S (0 1 1 0 1 0 0 1) from the   
   original truth table 
 - so the circuit works properly. 
 
 



 Part 2 
From Tutorial 4... 

Karnaugh Maps for functions with four inputs 
 
Given a function: 

F = ∑ { 0, 2, 3, 5, 7, 8, 10 } 
 

Create a truth table: 
 

A B C D F 
0 0 0 0 1 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 0 

 
Karnaugh maps and minimizations: 
 
Sum of Products: 

 
   CD   
   00 01 11 10 
 00 1 0 1 1 

AB 01 0 1 1 0 
 11 0 0 0 0 
 10 1 0 0 1 

 
D C A  D B A  D B  F ++=  

 



Product of Sums: 
 

   CD   
   00 01 11 10 
 00 1 0 1 1 

AB 01 0 1 1 0 
 11 0 0 0 0 
 10 1 0 0 1 

 
)DC)(BDAD)(B(F ++++=  

 
 
 
 

Part 3 
Implementing the Function from Part 2 

 
A)  NOR-NOR Logic: 

 
Notice how labeling the wires simplifies the circuit: 
 

 
 
Create a timing file: 
 

$T $D $I A $I B $I C $I D 
0 100 0 0 0 0 
 100 0 0 0 1 
 100 0 0 1 0 
 100 0 0 1 1 
 100 0 1 0 0 
 100 0 1 0 1 
 100 0 1 1 0 
 100 0 1 1 1 
 100 1 0 0 0 
 100 1 0 0 1 
 100 1 0 1 0 
 100 1 0 1 1 
 100 1 1 0 0 
 100 1 1 0 1 



 100 1 1 1 0 
 100 1 1 1 1 
 100 0 0 0 0 
 100 0 0 0 1 
 100 0 0 1 0 
 100 0 0 1 1 
 100 0 1 0 0 
 100 0 1 0 1 
 100 0 1 1 0 
 100 0 1 1 1 
 100 1 0 0 0 
 100 1 0 0 1 
 100 1 0 1 0 
 100 1 0 1 1 
 100 1 1 0 0 
 100 1 1 0 1 
 100 1 1 1 0 
 100 1 1 1 1 

 
Import the timing file, this is the result: 
 

 
 
We could directly check F against the truth table - but it is hard to be sure it is correct 
since there are now 16 cases to check. 
 



An easier way is to create a circuit that can test F against the expected value of F, F_e: 
 
 

 
 
 
Add a column to the timing file, F_e, which gives the expected value of F: 
 

$T $D $I A $I B $I C $I D $I F_e 
0 100 0 0 0 0 1 
 100 0 0 0 1 0 
 100 0 0 1 0 1 
 100 0 0 1 1 1 
 100 0 1 0 0 0 
 100 0 1 0 1 1 
 100 0 1 1 0 0 
 100 0 1 1 1 1 
 100 1 0 0 0 1 
 100 1 0 0 1 0 
 100 1 0 1 0 1 
 100 1 0 1 1 0 
 100 1 1 0 0 0 
 100 1 1 0 1 0 
 100 1 1 1 0 0 
 100 1 1 1 1 0 
 100 0 0 0 0 1 
 100 0 0 0 1 0 
 100 0 0 1 0 1 
 100 0 0 1 1 1 
 100 0 1 0 0 0 
 100 0 1 0 1 1 
 100 0 1 1 0 0 
 100 0 1 1 1 1 
 100 1 0 0 0 1 
 100 1 0 0 1 0 
 100 1 0 1 0 1 
 100 1 0 1 1 0 
 100 1 1 0 0 0 
 100 1 1 0 1 0 
 100 1 1 1 0 0 
 100 1 1 1 1 0 

 



Now, run the circuit with the new timing file.  This is the result: 
 

 
 
By looking at the Success line, we can see that the circuit always works. 
 
 
B)  MUX-16: 
 
Can implement any circuit with n inputs using a multiplexer with 2n lines, with each line 
connected to 0 or 1 according to the truth table.  So, for this circuit, we will need an 
MUX-16.  Since logicworks doesn't have one, you can make one using two MUX-8's 
(you don't need to encapsulate it, but so as not to give everything away I've encapsulated 
one for the purposes of the tutorial): 
 

 
 



Here's the resulting timing file: it works! 
 

 
 
C)  MUX-8: 
 
Note that the truth table can be grouped into twos, as follows: 
 

A B C D F  
0 0 0 0 1 
0 0 0 1 0 D' 

0 0 1 0 1 
0 0 1 1 1 1 

0 1 0 0 0 
0 1 0 1 1 D 

0 1 1 0 0 
0 1 1 1 1 D 

1 0 0 0 1 
1 0 0 1 0 D' 

1 0 1 0 1 
1 0 1 1 0 D' 

1 1 0 0 0 
1 1 0 1 0 0 

1 1 1 0 0 
1 1 1 1 0 0 

 
So, could use an MUX-8 with A, B, and C as the select lines, and then connect 0, 1, D, or 
D' for each combination of A, B, and C. 
 
D)  PROM: 
 
Use the PROM wizard to create a PROM with 4 address lines, and 1 bit output: 
 

 
 



Here's the contents of the PROM: 
 
1 0 1 1 
0 1 0 1 
1 0 1 0 
0 0 0 0 
 
And here's the resulting timing file: 
 

 
 
It works! 
 


